MineSweeper: An In-depth Look into Drive-by Mining and its Defense

Veelasha Moonsamy
Utrecht University, The Netherlands

28 August 2018
University of Adelaide, Australia
Utrecht University, The Netherlands
Acknowledgment

▶ Joint collaboration:

MineSweeper: An In-depth Look into Drive-by Cryptocurrency Mining and Its Defense

Radhesh Krishnan Konoth
Vrije Universiteit Amsterdam
r.k.konoth@vu.nl

Emanuele Vineti
Vrije Universiteit Amsterdam
emanuele.vineti@gmail.com

Veelasha Moonsamy
Utrecht University
email@veelasha.org

Martina Lindorfer
TU Wien
martina@iseclab.org

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Herbert Bos
Vrije Universiteit Amsterdam
herbertb@cs.vu.nl

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

▶ Paper available at: www.veelasha.org
Cryptocurrency: the rise of decentralized money

- A cryptocurrency:
 - is a digital asset designed to work as a medium of exchange
Cryptocurrency: the rise of decentralized money

A cryptocurrency:
- is a digital asset designed to work as a **medium of exchange**
- uses cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets
Cryptocurrency: the rise of decentralized money

- A cryptocurrency:
 - is a digital asset designed to work as a medium of exchange
 - uses cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets
- In 2009, the first cryptocurrency, ‘Bitcoin’, was introduced
Cryptocurrency: the rise of decentralized money

- A cryptocurrency:
 - is a digital asset designed to work as a **medium of exchange**
 - uses cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets
- In 2009, the first cryptocurrency, ‘Bitcoin’, was introduced
- Fast forward to 2018, about **1600** cryptocurrencies are in existence, out of which **more than 600** still see an active trade
Cryptocurrency: the rise of decentralized money

A cryptocurrency:
- is a digital asset designed to work as a medium of exchange
- uses cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets

In 2009, the first cryptocurrency, ‘Bitcoin’, was introduced

Fast forward to 2018, about 1600 cryptocurrencies are in existence, out of which more than 600 still see an active trade

An overall surge in market value across cryptocurrencies has renewed interest in cryptominers
Cryptocurrency: the rise of decentralized money

- A cryptocurrency:
 - is a digital asset designed to work as a medium of exchange
 - uses cryptography to secure financial transactions, control the creation of additional units, and verify the transfer of assets

- In 2009, the first cryptocurrency, ‘Bitcoin’, was introduced

- Fast forward to 2018, about 1600 cryptocurrencies are in existence, out of which more than 600 still see an active trade

- An overall surge in market value across cryptocurrencies has renewed interest in cryptominers

- ... which in turn led to the proliferation of cryptomining services, such as Coinhive - introduced in September 2017
From September 2017 onwards ...

It started with:

UNICEF Is Mining Crypto to Raise Funds for Children

‘Our Cryptocurrency Mining Policy: Free Content, No Ads!’
From September 2017 onwards ...

And things went downhill very quickly:

Coinhive Is Rapidly Becoming a Favorite Tool Among Malware Devs

By Catalin Cimpanu

Cryptojackers Found on Starbucks WiFi Network, GitHub, Pirate Streaming Sites

By Catalin Cimpanu

Coinhive Code Found On 300+ Websites Worldwide In Recent Cryptojacking Campaign

By Helen Partz

MAY 08, 2018
Drive-by mining aka *Cryptojacking*

- Is a web-based attack
- An infected website *secretly* executes a mining script (Javascript code and/or WebAssembly module) in user’s browser to mine cryptocurrencies
- Is considered *malicious* only when user does not explicitly give their consent
Drive-by mining aka *Cryptojacking*

- Is a web-based attack
- An infected website **secretly** executes a mining script (Javascript code and/or WebAssembly module) in user’s browser to mine cryptocurrencies
- Is considered **malicious** only when user does not explicitly give their consent
- In this work: we study the prevalence of drive-by mining attacks on Alexa’s Top 1 million websites
Threat Model

1. HTTP Request
2. HTTP Response
 (Orchestrator Code)
3. Fetch Mining Payload
4. Mining Pool Communication
5. Relay Communication
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
 - Not scalable

2. High CPU-based approach
 - False positives, as there might exist other CPU-intensive use cases
 - False negatives, as cryptominers have started to throttle their CPU usage to evade detection
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
 - Not scalable
 - Prone to high false negatives

2. High CPU-based approach
 - False positives, as there might exist other CPU-intensive use cases
 - False negatives, as cryptominers have started to throttle their CPU usage to evade detection
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
 - Not scalable
 - Prone to high false negatives
 - Easily defeated by URL randomization and domain generation algorithms
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
 - Not scalable
 - Prone to high false negatives
 - Easily defeated by URL randomization and domain generation algorithms

2. High CPU-based approach
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
 - Not scalable
 - Prone to high false negatives
 - Easily defeated by URL randomization and domain generation algorithms

2. High CPU-based approach
 - False positives, as there might exist other CPU-intensive use cases
Current detection methods

Two main approaches have been used:

1. Blacklist-based approach
 - Not scalable
 - Prone to high false negatives
 - Easily defeated by URL randomization and domain generation algorithms

2. High CPU-based approach
 - False positives, as there might exist other CPU-intensive use cases
 - False negatives, as cryptominers have started to throttle their CPU usage to evade detection
Contributions

- Perform first in-depth assessment of drive-by mining

- Discuss why current defenses based on blacklisting and CPU usage are ineffective

- Propose **MineSweeper**, a novel detection approach based on the identification of the cryptographic functions (static analysis) and cache events (during run-time)
Contributions

- Perform first in-depth assessment of drive-by mining
- Discuss why current defenses based on blacklisting and CPU usage are ineffective
Contributions

- Perform first in-depth assessment of drive-by mining
- Discuss why current defenses based on blacklisting and CPU usage are ineffective
- Propose **MineSweeper**, a novel detection approach based on the identification of the cryptographic functions (static analysis) and cache events (during run-time)
Drive-by mining in the wild

Conducted a large-scale analysis with the aim to answer the following questions:

1. How prevalent is drive-by mining in the wild?
2. How many different drive-by mining services exist currently?
3. Which evasion tactics do drive-by mining services employ?
4. What is the modus operandi of different types of campaign?
5. How much profit do these campaigns make?
6. What are the common characteristics across different drive-by mining services that can be used for their detection?
Large-scale Analysis: experiment set-up
Data collection

- Over a period of one week in mid-March 2018
Data collection

- Over a period of one week in mid-March 2018
- Crawler
 - Crawled landing page and 3 internal pages
 - Stayed on each visited page for 4 seconds
 - No simulated interacted, i.e. the crawler did not give any consent for cryptomining
Data collection

- Over a period of one week in mid-March 2018
- Crawler
 - Crawled landing page and 3 internal pages
 - Stayed on each visited page for 4 seconds
 - No simulated interacted, i.e. the crawler did not give any consent for cryptomining
- Crawled 991,513 websites; 4.6 TB raw data and 550 MB data profiles
Recall: cryptomining code consists of *orchestrator code* and *mining payload*
Recall: cryptomining code consists of orchestrator code and mining payload

Identification of orchestrator code
Preliminary results: Cryptomining code (1/2)

- Recall: cryptomining code consists of orchestrator code and mining payload
- Identification of orchestrator code
 - Websites embed the orchestrator script in the main page
Preliminary results: Cryptomining code (1/2)

- Recall: cryptomining code consists of *orchestrator code* and *mining payload*
- Identification of orchestrator code
 - Websites embed the orchestrator script in the main page
 - Can be detected by looking for specific string patterns
Recall: cryptomining code consists of orchestrator code and mining payload

Identification of orchestrator code

- Websites embed the orchestrator script in the main page
- Can be detected by looking for specific string patterns

```html
<script src="https://coinhive.com/lib/coinhive.min.js"> </script>
<script>
    var miner = new CoinHive.Anonymous('CLIENT-ID', {throttle: 0.9});
    miner.start();
</script>
```
Recall: cryptomining code consists of *orchestrator code* and *mining payload*

Identification of orchestrator code

- Websites embed the orchestrator script in the main page
- Can be detected by looking for specific string patterns

   ```html
   <script src="https://coinhive.com/lib/coinhive.min.js">
   </script>
   <script>
   var miner = new CoinHive.Anonymous('CLIENT-ID',
       {throttle: 0.9});

   miner.start();
   </script>
   ```

Keywords: CoinHive.Anonymous or coinhive.min.js
Preliminary results: Cryptomining code (2/2)

- Identification of mining payload
 - Dump the Wasm (WebAssembly) payload
 - `--dump-wasm--` module flag in Chrome dumps the loaded Wasm modules
 - Keyword-based search: `cryptonight_hash` and `CryptonightWasmWrapper`
Effectiveness of fingerprint-based detection

<table>
<thead>
<tr>
<th>Mining Service</th>
<th>Number of Websites</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coinhive</td>
<td>514</td>
<td>59.35%</td>
</tr>
<tr>
<td>CoinImp</td>
<td>94</td>
<td>10.85%</td>
</tr>
<tr>
<td>Mineralt</td>
<td>90</td>
<td>10.39%</td>
</tr>
<tr>
<td>JSECoin</td>
<td>50</td>
<td>5.77%</td>
</tr>
<tr>
<td>CryptoLoot</td>
<td>39</td>
<td>4.50%</td>
</tr>
<tr>
<td>CryptoNoter</td>
<td>31</td>
<td>3.58%</td>
</tr>
<tr>
<td>Coinhave</td>
<td>14</td>
<td>1.62%</td>
</tr>
<tr>
<td>Minr</td>
<td>13</td>
<td>1.50%</td>
</tr>
<tr>
<td>Webmine</td>
<td>8</td>
<td>0.92%</td>
</tr>
<tr>
<td>DeepMiner</td>
<td>5</td>
<td>0.58%</td>
</tr>
<tr>
<td>CpuFun</td>
<td>4</td>
<td>0.46%</td>
</tr>
<tr>
<td>Monerise</td>
<td>2</td>
<td>0.23%</td>
</tr>
<tr>
<td>NF WebMiner</td>
<td>2</td>
<td>0.23%</td>
</tr>
<tr>
<td>Total</td>
<td>866</td>
<td>100%</td>
</tr>
</tbody>
</table>
Effectiveness of fingerprint-based detection

- Detected 866 websites; 59.35% used Coinhive cryptomining services

<table>
<thead>
<tr>
<th>Mining Service</th>
<th>Number of Websites</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coinhive</td>
<td>514</td>
<td>59.35%</td>
</tr>
<tr>
<td>CoinImp</td>
<td>94</td>
<td>10.85%</td>
</tr>
<tr>
<td>Mineralt</td>
<td>90</td>
<td>10.39%</td>
</tr>
<tr>
<td>JSECoin</td>
<td>50</td>
<td>5.77%</td>
</tr>
<tr>
<td>CryptoLoot</td>
<td>39</td>
<td>4.50%</td>
</tr>
<tr>
<td>CryptoNoter</td>
<td>31</td>
<td>3.58%</td>
</tr>
<tr>
<td>Coinhave</td>
<td>14</td>
<td>1.62%</td>
</tr>
<tr>
<td>Minr</td>
<td>13</td>
<td>1.50%</td>
</tr>
<tr>
<td>Webmine</td>
<td>8</td>
<td>0.92%</td>
</tr>
<tr>
<td>DeepMiner</td>
<td>5</td>
<td>0.58%</td>
</tr>
<tr>
<td>Cpufun</td>
<td>4</td>
<td>0.46%</td>
</tr>
<tr>
<td>Monerise</td>
<td>2</td>
<td>0.23%</td>
</tr>
<tr>
<td>NF WebMiner</td>
<td>2</td>
<td>0.23%</td>
</tr>
<tr>
<td>Total</td>
<td>866</td>
<td>100%</td>
</tr>
</tbody>
</table>
Effectiveness of fingerprint-based detection

- Detected 866 websites; 59.35% used Coinhive cryptomining services
- Issues: code obfuscation and manual effort of updating signatures

<table>
<thead>
<tr>
<th>Mining Service</th>
<th>Number of Websites</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coinhive</td>
<td>514</td>
<td>59.35%</td>
</tr>
<tr>
<td>CoinImp</td>
<td>94</td>
<td>10.85%</td>
</tr>
<tr>
<td>Mineralt</td>
<td>90</td>
<td>10.39%</td>
</tr>
<tr>
<td>JSECoin</td>
<td>50</td>
<td>5.77%</td>
</tr>
<tr>
<td>CryptoLoot</td>
<td>39</td>
<td>4.50%</td>
</tr>
<tr>
<td>CryptoNoter</td>
<td>31</td>
<td>3.58%</td>
</tr>
<tr>
<td>Coinhave</td>
<td>14</td>
<td>1.62%</td>
</tr>
<tr>
<td>Minr</td>
<td>13</td>
<td>1.50%</td>
</tr>
<tr>
<td>Webmine</td>
<td>8</td>
<td>0.92%</td>
</tr>
<tr>
<td>DeepMiner</td>
<td>5</td>
<td>0.58%</td>
</tr>
<tr>
<td>Cpufun</td>
<td>4</td>
<td>0.46%</td>
</tr>
<tr>
<td>Monerise</td>
<td>2</td>
<td>0.23%</td>
</tr>
<tr>
<td>NF WebMiner</td>
<td>2</td>
<td>0.23%</td>
</tr>
<tr>
<td>Total</td>
<td>866</td>
<td>100%</td>
</tr>
</tbody>
</table>
Preliminary results: Mining pool communication (1/2)

- Miners use the Stratum protocol to communicate with the mining pool
- Use of WebSockets to allow full-duplex, asynchronous communication between code running on a webpage and servers
- Search in WebSocket frames for keywords related to Stratum protocol

<table>
<thead>
<tr>
<th>Command</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>type:auth</td>
</tr>
<tr>
<td>Authentication accepted</td>
<td>type:authed</td>
</tr>
<tr>
<td>Fetch job</td>
<td>identifier:job</td>
</tr>
<tr>
<td>Submit solved hash</td>
<td>type:submit</td>
</tr>
<tr>
<td>Solution accepted</td>
<td>command:accepted</td>
</tr>
<tr>
<td>Set CPU limits</td>
<td>command:set_cpu_load</td>
</tr>
</tbody>
</table>
Preliminary results: Mining pool communication (2/2)

- 59,319 (5.39%) websites use WebSockets
- 1,008 websites use Stratum protocol for communication
- 2,377 websites encode the data (Hex code or salted Base64)
 - more on this later
Summary of key findings

- Identified 1,735 websites as mining cryptocurrency, out of which 1,627 (93.78%) could be identified based on keywords in the cryptomining code.
- 1,008 (58.10%) use the Stratum protocol in plaintext, 174 (10.03%) obfuscate the communication protocol.
- All the websites (100.00%) use Wasm for the cryptomining payload and open a WebSocket.
- At least 197 (11.36%) websites throttle their CPU usage to less than 50%, while for only 12 (0.69%) mining websites we observed a CPU load of less than 25%.
In-depth analysis: evasion techniques (1/2)

We identified three evasion techniques, which are widely used by the drive-by mining services in our dataset.

▶ Code obfuscation
 ▶ *Packed code*: The compressed and encoded orchestrator script is decoded using a chain of decoding functions at run time.
 ▶ *PCharCode*: The orchestrator script is converted to charCode and embedded in the webpage. At run time, it is converted back to a string and executed using JavaScript’s eval() function.
 ▶ *Name obfuscation*: Variable names and functions names are replaced with random strings.
 ▶ *Dead code injection*: Random blocks of code, which are never executed, are added to the script to make reverse engineering more difficult.
 ▶ *Filename and URL randomization*: The name of the JavaScript file is randomized or the URL it is loaded from is shortened to avoid detection based on pattern matching.
In-depth analysis: evasion techniques (1/2)

We identified three evasion techniques, which are widely used by the drive-by mining services in our dataset

- **Code obfuscation**
 - *Packed code*: The compressed and encoded orchestrator script is decoded using a chain of decoding functions at run time.
 - *PCharCode*: The orchestrator script is converted to charCode and embedded in the webpage. At run time, it is converted back to a string and executed using JavaScript’s eval() function.
 - *Name obfuscation*: Variable names and functions names are replaced with random strings.
 - *Dead code injection*: Random blocks of code, which are never executed, are added to the script to make reverse engineering more difficult.
 - *Filename and URL randomization*: The name of the JavaScript file is randomized or the URL it is loaded from is shortened to avoid detection based on pattern matching.

- Mainly applied to orchestrator code, only obfuscation on mining payload is *name obfuscation*
In-depth analysis: evasion techniques (2/2)

- Identified the Stratum protocol in plaintext for 1,008 websites
- Manually analyzed the WebSocket communication for the remaining 727 websites and found the following:
 - Obfuscate by encoding the request, either as Hex code, or with salted Base64 encoding before transmitting it through the WebSocket
 - Could not identify any pool communication for the remaining 553 websites, either due to other encodings, or due to slow server connections

Finally, anti-debugging tricks (139 websites): code periodically checks whether the user is analyzing the code served by the webpage using developer tools. If the developer tools are open in the browser, it stops executing any further code
MineSweeper employs multiple stages in order to detect a webminer:

1. Dump Wasm module and Monitor CPU cache
2. Analyze Wasm
3. Detect Crypto functions
4. Detect CPU cache miner activity

Result
CryptoNight algorithm (1/2)

- CryptoNight was proposed in 2013 and popularly used by Monero (XMR)
CryptoNight algorithm (1/2)

- CryptoNight was proposed in 2013 and popularly used by Monero (XMR)
- We exploit two fundamental characteristics:
CryptoNight was proposed in 2013 and popularly used by Monero (XMR)

- We exploit two fundamental characteristics:
- It makes use of several cryptographic primitives
 - Keccak 1600-516, Keccak-f 1600, AES, BLAKE-256, Groestl-256, and Skein-256
CryptoNight algorithm (1/2)

- CryptoNight was proposed in 2013 and popularly used by Monero (XMR)
- We exploit two fundamental characteristics:
 - It makes use of several cryptographic primitives
 - Keccak-1600-516, Keccak-f 1600, AES, BLAKE-256, Groestl-256, and Skein-256
 - A memory hard algorithm
 - High-performances on ordinary CPUs
 - Inefficient on today's special purpose devices (ASICs)
 - Internal memory-hard loop: alternate reads and writes to the Last Level Cache (LLC)
CryptoNight allocates a scratchpad of 2MB in memory

On modern processors ends up in the LLC
Wasm analysis

- Linear assembly bytecode translation using the WebAssembly Binary Toolkit (WABT) debugger
- Functions identification - to create an internal representation of the code for each function
- Cryptographic operation count - track the control flow and crypto operands
- Static call graph construction, including identification of loops
CryptoNight detection

- MineSweeper is given as input a CryptoNight fingerprint
- We created a fingerprint for each of CryptoNight’s cryptographic primitives based on operands counts and flow structure
- If 3 out of the 5 cryptographic primitives are good matches, then the miner is identified
CryptoNight detection - example

- Assume the fingerprint for BLAKE-256 has 80 XOR, 85 left shift, and 32 right shift instructions.
- Function `foo()`, which is an implementation of BLAKE-256, that we want to match against this fingerprint, contains 86 XOR, 85 left shift, and 33 right shift instructions.
- In this case, the similarity score is 3 and difference score is 2.
- All three types of instructions are present in `foo()`; `foo()` contains extra XOR and an extra shift instruction.
CPU cache events monitoring

- What if an attack would sacrifice part of the profits for obfuscated Wasm?
- Solution: CPU cache events monitoring
- MineSweeper monitors the L1 and L3 for load and store events caused by the CryptoNight algorithm
- Also detects a fundamental characteristic of the CryptoNight algorithm: the memory-hard loop!
Evaluation of blacklisting approaches

- For comparison, we evaluate MineSweeper against Dr. Mine
- Dr. Mine uses CoinBlockerLists as the basis to detect mining websites
- Visited the 1,735 websites that were mining during our first crawl for the large-scale analysis with both tools
- Dr. Mine could only find 272 websites, while MineSweeper found 785 websites that were still actively mining cryptocurrency
Evaluation of cryptofunction detection

- Identified 38 unique samples among the 748 collected Wasm samples
- Applied the cryptofunction detection routine of MineSweeper on them

<table>
<thead>
<tr>
<th>Detected Primitives</th>
<th>Number of Wasm Samples</th>
<th>Number of Cryptominers</th>
<th>Missing Primitives</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>AES</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>Skein, Keccak, AES</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>All</td>
</tr>
</tbody>
</table>
We visited 7 pages for the following categories of applications:

- Cryptominers
- Videoplayers
- Wasm-based games
- JavaScript (JS) games
Evaluation of CPU cache events monitoring (2/2)

Our tests confirm us the effectiveness of this detection method on CryptoNight-based algorithms.

Performance counter statistics for the L1 cache for different types of web applications (logscale)

Performance counter statistics for the L3 cache for different types of web applications (logscale)
Conclusion

- Drive-by mining is real and can be very profitable for high traffic websites
- Current defenses are not sufficient to stop malicious mining
- To severely impact their profitability, we need to aim at the core properties of the miners code: cryptographic functions and memory behaviors

<table>
<thead>
<tr>
<th>Crawling period</th>
<th>March 12, 2018 – March 19, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td># of crawled websites</td>
<td>991,513</td>
</tr>
<tr>
<td># of drive-by mining websites</td>
<td>1,735 (0.18%)</td>
</tr>
<tr>
<td># of drive-by mining services</td>
<td>28</td>
</tr>
<tr>
<td># of drive-by mining campaigns</td>
<td>20</td>
</tr>
<tr>
<td># of websites in biggest campaign</td>
<td>139</td>
</tr>
<tr>
<td>Estimated overall profit</td>
<td>US$ 188,878.84</td>
</tr>
<tr>
<td>Most profitable/biggest campaign</td>
<td>US$ 31,060.80</td>
</tr>
<tr>
<td>Most profitable website</td>
<td>US$ 17,166.97</td>
</tr>
</tbody>
</table>
Thank you for your attention!

email@veelasha.org
www.veelasha.org