MASTER THESIS

RADBOUD UNIVERSITY NIJMEGEN

Attribute-based credentials on smartwatches

Author: Supervisor:
Martijn Terpstra Prof. Lejla Batina
M.A.Terpstra@student.ru.nl Lejla@cs.ru.nl
s0814962

Daily supervisor:
dr. Veelasha Moonsamy
v.moonsamy@cs.ru.nl

Second reader:
dr. ir. Joeri de Ruiter
joeri@cs.ru.nl

October 25, 2017

Abstract

Smartwatches are wearable technology that is becoming increasingly powerful
and common in use. Improvement in smartwatch technology means faster processing
speed and new ways to interact with other devices. These new capabilities come with
new risks but also with new possibilities. On the one hand, wearable technology is a
large threat to privacy because it can collect personal data very accurately through
its sensors. On the other hand, wearable technologies may allow for new use cases,
which might have been complicated with other hardware. The current generation of
smartwatches is similar in processing speed to early smartphone. Because of this, it
is worthwhile to research if smartwatch can do some things as good or better than
other devices such smartphones.

In this thesis I will explore the use of attribute-based credentials (ABCs) on
smartwatches. Attribute-based credentials are a method of authentication, which
provides advantages over the commonly used identity-based credentials. In contrast
to identity-based credentials, attribute-based credentials allow for selective disclo-
sure of attributes and avoid the need for an identity, allowing for easier safeguarding
of privacy. In addition to exploring the usefulness and practicality of authenticat-
ing using attribute-based credentials on a smartwatch, I will implement a proof of
concept application based on the existing IRMA project to show that a smartwatch
implementation is technologically viable.

Contents

Contents ii
1 Introduction 1
1.1 Smartwatches 2
1.2 Authentication 4
1.3 IRMA Project o 6
1.4 Related work L 7
2 Methodology 8
2.1 Relevant Parties e 8
2.2 Technical requirements of use cases 9
2.3 Role of smartwatch during authentication 10
2.4 Development of Proof of Concept 11
3 Proof of Concept 15
3.1 [Initial Android wear apps 15
3.2 IRMAWear 16
3.3 IRMAWear2 s 19
3.4 Limitations e 25
4 Results & Future work 26
4.1 Results. e 26
4.2 Future Work e 26
Bibliography 28
Glossary 31
Software sources 32
Specifications Sony Smartwatch 3 33
Specification Samsung J100H 34

ii

Chapter 1

Introduction

When a user wants to use a service, which is provided by service provider, the service
provider may require the user to authenticate themselves. By authenticating, a user
reveals some information about themselves. For example, a customer wants to buy alco-
hol at a supermarket. To ensure that the customer is of drinking age, the supermarket
requires that the customer authenticates himself. The customer then shows his driver’s
license, revealing his date of birth and proving that he is of drinking age.

Authentication can be done via use of ID cards and smartphones and now smart-
watches. Smartwatches are not similar to smartphones. What immediately separates
smartwatches from smartphones is that smartwatches are small and wearable. A smart-
phone, if needed for authentication has to be taken out a bag or pocket, unlocked etc.
A smartwatch can be available instantly and can be more easily carried around. If the
authentication itself is done in a matter of second, taking out a smartphone, unlocking
it and storing it after authentication could easily take more time than the authentica-
tion itself. This simplification of the authentication process could greatly improve the
usability and in turn the adoption of any authentication application.

In this thesis I will explore the use of attribute-based credentials (ABCs) on smart-
watches. To do so, I will research and document attribute-based credentials and smart-
watches and their unique advantages and shortcomings. After that, I will write a
smartwatch-specific application to study the use of attribute-based credentials. Finally,
I will document the current shortcomings of smartwatches when it comes to their use of
attribute-based credential authentication.

I will first discuss the necessary background knowledge, both the terminology and the
relevant preexisting work in this chapter. I will then dedicate a chapter to explain my
methodology. This consists of formalizing the technical requirements for an attribute-
based credentials implementation and the exploration of useful use cases. After that I
will dedicate chapter 3 to explain a proof of concept I made of a working implementation
of attribute-based credentials on a smartwatch. Finally, I will summarize my findings
on the matter and discuss the future work that can be done.

2 CHAPTER 1. INTRODUCTION

1.1 Smartwatches

Smartwatches are wearable computers worn around a person’s wrist. In addition to time-
keeping, like traditional watch, smartwatches comes with a mobile operating system and
are capable of running applications. Smartwatches usually have embedded sensors that
are able to measure things like movement and temperature. Smartwatches can interact
directly with a user via voice communication and a touchscreen, and with other devices
using WiFi and/or Bluetooth. One feature that is noticeably absent when compared
to a smartphone is a video camera. Some, but not all smartwatches also support NFC
(Near-field communication). Additionally, the smartwatch can act as interface for the
user to the smartphone. Besides the difference in sensors, the most noticeable difference
between the various smartwatches is the operating system. Popular smartwatch oper-
ating systems are Tizen' developed by Samsung, WatchOS? developed by Apple and
Android Wear® developed by Google.

For this thesis I looked at smartwatches running Android Wear specifically. The
regular Android operating system runs on smartphones and tablets. Android Wear
is a version of the Android operating system specifically designed for smartwatches.
The most important reason for choosing Android Wear is that there already exists a
working Android implementation of IRMA. This is useful because large parts of the
Android application code base can be replicated. Because of this similarity, only the
parts specific to Android Wear have to be rewritten. Furthermore, Android wear is also
practical because the Android development tools can also be used for Android Wear
development. Particularly useful is the Android emulator, which emulates an Android
device on non-Android machines.

Compared to other devices such as smartphones, smartwatches are unique in a few
ways. Due to its nature it tends to always be active and listening. The wearing of the
watch means there is no delay between using and not using the device. Whereas a smart-
phone would occasionally be locked or put away. One specific area where the smartwatch
does better than a smartphone is (physical) gesture recognition[26]. While most smart-
phone also have motion sensors, the data from a smartwatch is more accurate as it is
worn by the user. This introduces new use cases like the gesture-based authentication
[15][16]. Another advantage of a smartwatch over a smartphone lies in the flexibility of
its hardware. Unlike a smartphone, a smartwatch can be worn and can be used immedi-
ately. A smartwatch cannot always be as easily used. A smartphone usually requires a
free hand to hold it when using the device. In addition to these features, smartwatches
come with sensors like GPS, gyroscope, hearth rate monitor and diving depth sensor.

A smartwatch is frequently used in combination with a smartphone. The smartwatch
I used for my experiment would skip its initial setup until it had been paired with a
smartphone. When connected with my It acted as an additional screen. The smartwatch
would show the smartphone, the smartwatch would act as an extension of my smartphone.

"Mttps://www.tizen.org
’https://www.apple.com/watchos/
Shttps://www.android.com/wear/

https://www.tizen.org
https://www.apple.com/watchos/
https://www.android.com/wear/

1.1. SMARTWATCHES 3

Lorem Ipsum test

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in

reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in
culpa qui officia deserunt mollit
anim id est laborum.

Pellentesque dapibus suscipit
ligula. Donec posuere augue in .

. Lorem ipsum dolor
quam. Etiam vel tortor sodales Sit amet consectetu
ellus ultricies commodo. adipiscing elit, sed

Figure 1.1: Comparison of screen size between smartphone and smartwatch using placeholder
text. In practice applications do not devote their entire screen to displaying text, leaving room
for white space, images and interactive elements such as onscreen buttons

For example a user can view notifications coming from his smartphone on his smartwatch.
It can also act as an addition input when used alongside a smartphone. For example,
the smartwatch can set alarms and skip music tracks when playing music on the phone.

From a usability perspective there are multiple problems. The main problem with
interacting with the user is the small touchscreen. With a smaller display fewer elements
can be displayed at once as seen in Figurel.l. Since screen of a smartwatch is smaller
than many on-screen keyboard on smartphones and tablets, this puts a limit on the
complexity of user inputs. The small screen limits the amount of information that can
be displayed without sacrificing readability.

Compared to a smartphone, a smartwatch also comes with new security risks. For
example there is research[25][17] showing that passwords typed can be recovered from
motion data captured using wearable technologies.

4 CHAPTER 1. INTRODUCTION

1.2 Authentication

Identity-Based Credentials

For authentication Identity-based credentials are often used. Compared to attribute-
based credentials, identity-based credentials are easier to implement. At its simplest
both client and server agree on a shared secret when creating an identity and associating
a level of authentication with that identity. When the client wants to authenticate, he
does so by showing ownership of an identity with an appropriate level of authentication.
To prove possession of that identity the user shows that he knows the secret associated
with that identity. For example a user signs up for an online video streaming service
where only authorized users can view certain movies. The user would create an account
(identity) with a password (secret). During the creation of that identity the server could
verify the legitimacy of the user, for example by making the user pay a fee. Finally,
by associating each user with an identity, a user’s behavior can easily be tracked across
sessions. This results in a loss of privacy compared to the situation where individual
sessions cannot be linked to the same user. The concept of identity-based credentials
does come with drawbacks. Firstly the server has to keep track, and keep confidentiality,
of shared secrets of its users. Secondly users have to keep track of many secrets, unique
for each service and level of authorization. For example a user may use separate email
accounts for both his professional and private life.

Attribute-Based Credentials

Attribute-based credentials or ABCs is a method for authenticating. Authentication is
the act of proving to another party that you posses certain attributes. In this context
a credential shall be a cryptographically signed attribute. Any party will be able to
verify that a party has signed an attribute by using the signer’s public key. This can
be done either by proving the attributes or by proving an identity for which the other
party knows the associated attributes.

An attribute is disclosed to a party when it learns the contents of that attribute. For
example, a shop’s owner can learn a person’s nationality when they use a passport to
prove their age.

Attribute-based credentials are a method of authentication that has eliminated sev-
eral problems around identity-based authentication. The user does not prove an identity.
Instead, they prove attributes they hold. Attribute authorities give users the informa-
tion needed to construct proofs for attributes they hold. Service providers can verify
these proofs using information published by the attribute authorities. An example can
be given using the supermarket scenario described earlier. Using attribute-based cre-
dentials, when a customer is asked to prove they are of drinking age, they provide the
supermarket a proof that they have the attribute "Over 18 years old". The supermarket
can verify this proof to confirm the customer is actually of drinking age. The given proof
contains neither the user’s identity nor the exact age of the customer.

Attributes are information about a person such as their nationality, date of birth or

1.2. AUTHENTICATION 5

main bank account. An attribute is proven to another party if either the other party
has verified this attribute itself, or instance a nation can verify that a person has their
nationality by if the other party trusts whomever has verified the attribute. For checking
their records, and border control may verify a nationality by checking the validity of a
passport issued by that nation.

In contrast to attributes, an identity is a piece of information, like a serial number,
uniquely attributed to one party for which a service provider knows the associated at-
tributes. For instance if a supermarket issues a loyalty card and keeps track of the usage
of that loyalty card, the supermarket can confirm that a user hold a certain attribute
by checking a unique identifier or that loyalty card and verifying that it was used in a
certain way.

Attribute-based credentials are based around the notion of zero-knowledge proofs.
Zero-knowledge proofs allow one party to prove a statement to another party without re-
vealing anything else about that statement. In the case of attribute-based credentials an
attribute holder, using zero-knowledge proofs, can prove that he holds certain attributes
without revealing his identity or other attributes the user holds.

One of the advantages of attribute-based credentials is unlinkability. Two authenti-
cation sessions to a party are unlinkable when that party cannot prove that the authen-
tications are done by the same person. Linkability does not necessarily mean a party
learns the person’s identity. However, if a party knows the person’s identity in both
authentications, they are definitely linkable. Linkability is undesirable because it makes
it easy to compromise the privacy of its users by allowing users to be tracked across
sessions.

Another advantage is the straightforward use of selective disclosure. Selective Dis-
close is the ability to disclose only a subset of attributes. More privacy is preserved when
an authentication can be done by disclosing only the attributes required for that authen-
tication. Another useful property of this is the ability to re-use the same credentials for
different requirements.

To get something resembling selective disclosure with identity-based credentials a
user may try to create multiple identities with different sets of attributes associated
with them. The problem with this is twofold. Firstly this is impractical or sometimes
impossible in practice. Having to manage multiple identities for multiple services is
not something users commonly do. Secondly if authentications are not unlinkable, for
instance if both identities are linked to the same home address, then the full set of
attributes can still be determined by combining knowledge of multiple identities.

There are two major schemes that allow for selective disclosure of credentials, Mi-
crosoft’s U-Prove and IBM’s Idemix. Both schemes are based on the verification of signed
commitments. U-Prove [20] depends on the discrete logarithm problem. The holder has
a secret key for each attributes and the issuer learns of the signed attributes of the
holder. Through an interactive zero-knowledge protocol the holder can prove knowledge
of specific attributes. Unlinkability requires new credentials for each authentication.

IBM’s Idemix [8] depends on the RSA problem. Unlike U-Prove it requires only
a single secret key for all attributes. The holder can use his own master keys for his

6 CHAPTER 1. INTRODUCTION

credentials. Issuing is done using a blind signature, where the issuer does not learn the
resulting form of the credentials. Unlike U-Prove Idemix provides unlinkability without
the issuer having to issue multiple credentials. Two projects are worth mentioning,
ABCA4Trust and the IRMA project, are based on the Idemix protocol.

There are two interesting project based on Idemix: IRMA, explained in section 1.3
and ABC4Trust. ABC4Trust [21] is a EU-funded project that researches and develops
ABC systems. It has so far produced two pilots. Firstly a Greek pilot [13] that enables
student to evaluate courses anonymously. Secondly a Swedish pilot [4] allowed students
to anonymously access online resources.

1.3 IRMA Project

IRMA, short for I Reveal My Attributes, is an ecosystem for attribute-based creden-
tials developed by the Stichting Privacy by Design* based on the Idemix technology.
IRMA has several pilots with the Radboud University, Surfnet® and Alliander®. Be-
sides these pilots it is possible to test the technology using a demo website’ or setup
your own server using the publicly available source code. This particular project is
useful as an ecosystem for a proof of concept on a smartwatch. There already exists
a working Android implementation on smartphones. Some current smartwatches run
Android Wear, a modified version of Android. Given the similar operating systems, it
should be easier to port the application to a smartwatch than if the smartwatch was
of a completely different ecosystem. Even if the operating systems were similar, having
to implement only an attribute holding application instead of implementing all parties
is a useful advantage. All the official IRMA software is publicly available on GitHub
at https://github.com/credentials/. Attributes can already be obtained and stored
on MULTIOS smart cards® and Android smartphones®.

For the purpose of these three pieces of software are relevant. irma_api_server
is software that allows for the creation and verification of IRMA attributes. One server
can be used to issue credentials on behalf of multiple parties.

10

irma_js'! is a JavaScript library for interaction with an instance of irma_api_server.
irma_js and irma_api_server do not need to be controlled by the same entity. A com-
pany could use irma_js on its website and trust another party with the technical knowl-
edge to run irma_api_server for verifying the attributes. irma_android_cardemu'?

is the Android version of the IRMA application for holding and managing the users

‘https://www.privacybydesign.foundation
Shttps://wuw.surfnet.nl
Shttps://www.alliander.com/nl
"https://demo.irmacard.org/
Shttps://github.com/credentials/irma_card
https://github.com/credentials/irma_android_cardemu
YOnttps://github.com/credentials/irma_api_server
"Uhttps://github.com/credentials/irma_js
2https://github.com/credentials/irma_android_cardemu

https://github.com/credentials/
https://www.privacybydesign.foundation
https://www.surfnet.nl
https://www.alliander.com/nl
https://demo.irmacard.org/
https://github.com/credentials/irma_card
https://github.com/credentials/irma_android_cardemu
https://github.com/credentials/irma_api_server
https://github.com/credentials/irma_js
https://github.com/credentials/irma_android_cardemu

1.4. RELATED WORK 7

attributes. The proof of concept developed for this thesis is largely based on the code of
irma_cardemu and work in combination with irma_js and irma_api_server.

1.4 Related work

For a general overview of attribute-based credentials Concepts and languages for privacy-
preserving attribute-based authentication[6] standardizes some concepts used in different
scheme for attribute-based credentials and The ABC of ABC|[14], explores the privacy
aspects of attribute-based credentials.

For a more detailed look at IRMA, in IRMA: practical, decentralized and privacy-
friendly identity management using smartphones[3] the use of IRMA on smartphones is
explained and in Towards Practical Attribute-Based Identity Management: The IRMA
Trajectory[2], the trajectory for the IRMA project as a whole is explained. The most
prominent implementation of IRMA is on smartphones. Another interesting implemen-
tation of IRMA is the implementation of IRMA on smart cards[24]. Smart cards are
more limited, both in memory capacity and processing speed, than other devices that
run TRMA. The result of this is a simplified version of IRMA designed specifically for
these low power devices.

A few papers focus on extensions of attribute-based credentials. This includes, delega-
tion of credentials to other parties[10] the revocation of already issued credentials[7][18]
and mutual authentication between holder and verifier[1].

Instead of authentication a user for a specific session, it is also possible to use
Attribute-based signatures[19]. This allows attribute holders to sign a message allow-
ing other parties to verify.

In addition to specific technical expansions there is research into the use of attribute-
based credentials in specific use cases, including web services[22], eHealth systems[11],
smart homes[23] and web-shopping in a privacy-preserving fashion[12].

Lastly, attribute-based encryption[9][5] is related, but different from attribute-based
credentials. Unlike attribute-based credentials which provide authentication, attribute-
based encryption allow for the encryption (and decryption) based of attribute. This
allows for confidentiality between multiple users with the same attributes.

Chapter 2

Methodology

To evaluate the viability of Attribute-based credentials on smartwatch I look into multi-
ple questions. Firstly, are smartwatches a viable alternative to other hardware for use of
attribute-based credentials. Secondly, does the use of smartwatches have large advantage
for specific uses of attribute-based credentials compared to other hardware. Thirdly, is
the use of attribute based credentials technologically possible on a smartwatch.

To answer these questions I will explore the use cases of a smartwatch and create proof
of concept. In the next few sections I will formalize some requirements, advantages and
limitations of using attribute-based credentials on smartwatches. Finally, I will describe
my setup for developing a proof of concept application, which I will then explore in
greater detail in chapter 3.

2.1 Relevant Parties

In this thesis I will be referring to three relevant parties, the issuer, the reader and the
holder.

e The Issuer is the party issuing credentials to holder.
e The Reader is the party that will verify the holder’s credentials.
e The Holder is the party that provides credential to a reader

Just because attribute-based credentials can be used does not necessarily mean that
attribute-based credentials are practical. For a more complete use case of an application
using attribute-based credentials we require more. Ideally our application should be
able to handle multiple attributes and selective disclosure. In addition to obtaining and
disclosing credentials, we would like to be able to manage our credentials, allowing us to
view and remove our stored credentials. Lastly when we have multiple credentials that
can be used, we would like to select which credentials to use for authentication.

We can show the practicality of using a smartwatch over using any other device in two
ways. Firstly we can find a use case where existing implementations have problems and

8

2.2. TECHNICAL REQUIREMENTS OF USE CASES 9

Initial attribute distribution

Holder Issuer

Attribute Request

Proof of attributes

Figure 2.1: Minimal interactions needed for issuing attributes

Selective Attribute disclosure

Holder Reader
Attribute Request

Proof of specific attributes

Figure 2.2: Minimal interactions needed of attribute disclosure

show how smartwatches overcome these problems. In section 2.2 I explore smartwatch
specific use cases. Secondly we can find a use case where smartwatches can be used in
the same way as current devices, showing that smartwatches are a viable alternative. In
chapter 3 I explore the use of a smartwatch in the existing infrastructure of IRMA.

2.2 Technical requirements of use cases

To show that an application can authenticate using attribute-based credentials you need
it to perform at least two actions. First it needs to be able to receive and store an
attribute. Secondly it needs to be able to reveal a stored attribute. This would show
that attribute-based credentials are technically possible. For this we need at least three
parties. First we need an attribute holder, that will receive and reveal attributes. Sec-
ondly we need an attribute reader who want the holder to reveal their attributes. Lastly
we need an attribute authority who is trusted by the reader to give authority to the
given attributes.

10 CHAPTER 2. METHODOLOGY

2.3 Role of smartwatch during authentication

There are three roles a party can play; the issuer, the holder and the reader. Because
of its portability, a smartwatch can be used in situations where carrying around a larger
device, such as a smartphone, would be an issue. This makes a smartwatch practical in
situations where a party has to move to a location and where the holder does not want
to pull out his smartphone to authenticate.

The role of issuer does not require physical presence or a quick reply to unanticipated
requests. Because of this there is no benefit to using a smartwatch as an issuer.

The use of smartwatch as a reader may not be practical. A reader may want physical
proximity, e.g. during an age check in a supermarket. If the reader itself does not require
mobility, the advantages of a smartwatch over a smartphone are limited.

If the attribute reader reads the attributes of many attribute holders from a single
location, portability and initial setup time are not major issues. Furthermore, a change
of operators of the attribute reader would be more difficult since the device is worn.
Because of these limited advantages, I think smartwatches are a poor fit for reading out
attributes.

This leaves holder authentication. The initialization is no better for a smartwatch,
since it needs to be neither to be timely nor physically present. There are 2 types
of scenarios to be considered when using a smartwatch as a holder. There are the
scenarios where the smartwatch is used alongside a smartphone and the scenarios where
a smartwatch is used independently.

The smartwatch will be used in the role of attribute holder. Therefore, only the use
cases where an attribute holder would be involved are explored. The only required use
cases where the attribute holder participates are the case where the holder is initialized
with its proof of attributes and the case where it wants to (selectively) prove its attributes
to another party.

It is possible to use a smartwatch and smartphone together as a holder party. In
practice there would be several setups possible. One method would be to use the smart-
phone as a proxy for communications to the smartwatch. This would solve the problem
of communication of a smartwatch with a third party. However, since the user has to
initialize the session using the smartphone, it would likely be simpler to just use the
smartphone.

Another setup is where the smartwatch acts like a proxy for the smartphone. Due to
its wearable nature, a smartwatch can be used in situations where a smartphone cannot.
For instance the user cannot store a device in a pocket or bag when not using it, or the
user needs to have both hands free when using the device.

For a use case where smartwatches are more useful than other device for attribute-
based authentication, we require two things. First we need a situation where attribute-
based credentials are useful. This means a situation where authentication is needed and
can be done by revealing only attributes. Secondly we need a situation where physical
proximity matters or no other device (like a smartphone can be used). The situation
where physical proximity matters useful for smartwatch use cases because it plays to the

2.4. DEVELOPMENT OF PROOF OF CONCEPT 11

strengths of a smartwatch. Situations where a smartphone cannot be used are interesting
because often a smartphone is more practical than a smartwatch.

A simple use case would be a fast age check in a supermarket. A more convenient
authentication would allow for faster processing of a queue of customers.

A more complex use case would be during a marathon race where racers where a
party would like to verify contestants have passed all checkpoints. Carrying around
a smartphone and taking it out at every stop would be inconvenient and slow down
runners. Furthermore, attribute-based-credentials can be used to track progress.

o Before the race, the issuer issues the credential "is race qualified" to all racers.

e The first checkpoint a reader verifies that the holder is qualified to race and issues
a credential to prove that it passed the first checkpoint

o At every following checkpoint the reader verifies that the holder has passed the
previous checkpoint and issues a new credential verifying that it has passed the
current checkpoint.

e At the end of the race a reader only has to verify that the holder passed the last
checkpoint to verify that the holder has run the race fairly.

2.4 Development of Proof of Concept

IDE

Android studio is an IDE (integrated development environment) for Android develop-
ment for both phone and Android wear. Although it is possible to develop Android
applications with a simple text editor and the android command line application, the
complexity of java and Android makes it difficult for someone not familiar with the
system. For reference a minimal hello world application generated by Android-studio
already has over 3500 files and folders.

What is particularly useful for Android wear development is the previewing of the
UI without running the application. Most Ul elements are defined by their activities.
Activities are a collection of Ul elements with an associated class that handles the user
interactions. The definition of the user interface on Android is done using XML file.
Manual editing of these files is a lot simpler with most text editors than using Android
Studio. The updated activity Ul can be previewed as it is being edited with Android
studio. If you were to do this manually, you would have to rebuild the application every
time to test the new UI.

This is important because screen space on the wear is much more limited when
compared to smartphones and tablets.

Much of the development can be done with an emulator, emulating the smartphone.
There is an official Android emulator that simulates tablets, phones and smartwatches.
It allows users to test applications on the same machine they are developed on. You

12 CHAPTER 2. METHODOLOGY

CONTINUE

L

ex[show oy s i [

Figure 2.3: Screenshot of development environment showing a preview of the IRM AWear User
Interface

can control the emulator with mouse and keyboard, clicking the screen with a mouse
simulates a touch on a touchscreen.

The emulator works reasonably well however there are some differences from a phys-
ical watch. Firstly it can run on a different speed from actual devices. If an application
runs smoothly in an emulator, it does not mean it will run smoothly on a physical watch
and vice versa. Secondly the emulator accepts keyboard input, something you cannot
do with a smartwatch. This allows the emulator be used in situation where a physical
device cannot be used. The emulator does not have a paired phone, shares the internet
connection of its host and does not use Bluetooth. This may be an issue when trying to
test for setting up connections to other devices. The emulator has no sensor data, which
may be a problem for some use cases, but was not an issue in this thesis. Because the
emulator could not accurately emulate real use cases of the smartwatch, I later developed
using just a physical watch.

Differences phone/wearable development

Android apps developed for phones and tablets don’t automatically work on Android
smart wear and vice versa. Firstly this is because the screen interface is much smaller, so
small that an on-screen keyboard is not practical and only 2 or 3 onscreen buttons would
be feasible. Voice commands and swipe gestures (movements across the screen) might
be valid input methods but input remains limited. Secondly android wear requires a
newer API than some devices provide. Most apps don’t require the newest API and can
work on older android version. Apps designed for smart wear however require a newer
APT just to run.

The process of developing of an app for Android Wear is very similar to that of

2.4. DEVELOPMENT OF PROOF OF CONCEPT 13

developing an app for Android. Android phones and tablets can use the exact same
applications since they run the same operating system. UI elements will simply be
scaled based on the size of the screen. You can compile one apk (Android Application
Package) that installs on both tablets and phones. The Android wear applications have
to be designed and compiled separately. An apk compiled for phones/tablets will not
install on an Android wear and vice versa. You can import classes from phone/tablet
applications if you have the source code but the UI elements have to be made from
scratch.

In android studio, you can develop an app for both wearable and phone/tablet at the
same time. FEach version (wear or mobile) of the app will have some unique files, allow-
ing each to have a unique interface while sharing the same libraries. When compiling,
android studio generates two different apps (apks), one for mobile and one for wearable.
The app for the wearable device will not necessarily run on mobile and vice versa due
to different requirements on the systems.

Device used

After initially developing on an emulator, I continued developing on a physical watch. 1
used the Sony Smartwatch 3! as a physical smartwatch. Multiple models were available
but while there were large differences in price, the differences relevant to developing
applications were minor. I chose this specific watch because it was cheap (compared to
the other models) and had all the required features. I could successfully use the IRMA
app on a Samsung Galaxy J1 smartphone®. Beside a larger touchscreen and a camera,
the smartphone did not outperform the smartwatch in specifications. Because of this I
was confident the smartwatch could run IRMA as well.

!Specifications detailed in appendix 4.2
2Specifications detailed in appendix 4.2

14

» Step
IRMA self enrollment

This process consists of
the following three steps:

1. Entering some data
from your document;
9 Readiggdata

CONTINUE

CHAPTER 2. METHODOLOGY

Figure 2.4: IRMAWear running on physical watch

Chapter 3

Proof of Concept

It took several iterations to get attribute-based credentials working on a smartwatch.
This was largely due to a lack of experience with android development. I first created
small apps to test the build process for Android and Android Wear applications and fig-
ure out how setup and analyze basic functionality like Ul interaction and communication
with other devices. After that, over the course of several iterations I created a working
IRMA implementations. The next few sections explain the intermediary attempts with
section 3.3 explaining the final iteration of the proof of concept.

3.1 Initial Android wear apps
First I created a simple application to test that

e The Android development environment works.

e I can create a functional application and run it with the emulator

The application can make an internet connection with another application.
e The application can keep an Internal state.

The application is a simple challenge response system that sends messages back and
forth as plain text. In addition to the application I made a helper program outside
of the Android application. First I made a simple proxy server that logged incoming
and outgoing connections. Secondly I created a python script that interacted with the
Android application. To analyze the communication I setup a relatively simple network.
In between each communication there is a man in the middle proxy that log all messages
being sent back and forth. The sources of these are included in appendix 4.2

I had written these tools for two reasons. First it made it easier to debug any network
issues. Secondly I suspected the protocols may have to be adjusted. This setup allowed
me to model an attacker being able to view all traffic to see what new information can
be learned from this new setup.

15

16 CHAPTER 3. PROOF OF CONCEPT

IrmaWear 0.44.45 Enroll:

Obtain Credentials Document Enroll

Disclose Attributes Demo Enroll (Online)

Review Credentials Debug Enroll

Figure 3.1: Screenshots of menus of IRMAWear running on an emulator

3.2 IRMAWear

Next I implemented an IRMA version for Android wear. I named it IRMAWear to avoid
confusion with the existing IRMA implementation on Android that works with smart-
phones and tablets but not with smartwatches. The source code of the application is
available online at https://bitbucket.org/martijntje/irmawear/.

Initially I started by creating a simple smartwatch app extending it with the parts
from the existing IRMA application. This process was slow and did not seem viable.

Instead, I started again. I created a new empty Android wear application and added
all code from the Android application into IRMAWear. This led to a code base which
included the full IRMA application but could not compile for Android wear.

I then took the code base and I gradually tried compiling the application. Each
time an error returned I found the source of the error and either commented out the
problematic parts or replaced them with dummy versions. In the end I did not have
to change any of the cryptographic libraries. However, I did change most of the code
regarding Ul and user interaction.

After that I recreated the functionality of the first simple application so I could easily
test the application. I removed most of the original user interface to make IRMAWear
work. Although I included the code of the original IRMA application there was no way
for me to access this functionality without a proper user interface. On smartwatches
buttons need to be large compared to the screen size. If the buttons are too small,
pressing the current button become error-prone. I found that three buttons stacked
vertically works well.

When there is more functionality than a user can use with the buttons on the screen,
it is best to make a button to open new sub-menu with new buttons of it own. When
you create a new sub menu, the best way to do so is by creating a new activity. This
way you waste no screen space on a button because the user can swipe right to left to
return to the parent menu.

https://bitbucket.org/martijntje/irmawear/

3.2. IRMAWEAR 17

Obstacles encountered with IRM AWear

I did not get a working IRMA smartwatch app on my first attempt due to several issues.

The smartphone IRMA app can enroll using the demo website! without needing a
second device. It does so by opening the demo website on the phone where the user
can enter his/her details. I initially planned to recreate this but could not do so. The
first problem is with inputting the user data. The online enrollment requires the user to
input his data. Entering text is possible on an emulator, however a real smartwatch has
no keyboard. The smartwatch API provides no method for selecting dates are inputting
text. 2

Secondly the smartwatch app tries to display the demo web page for issuing cre-
dentials. Since the Android wear version I tested has no web browser (or method of
installing one), the application simply crashes when trying to open a web page.

Another large problem when trying to port the existing Android IRMA application
to the smartwatch was using the existing communication channels. The Android applica-
tion can be easily tested using a phone by visiting the IRMA demo website? and scanning
a QR code. This QR code contains the information needed to set up a connection be-
tween the smartphone and the demo server. Since smartwatches have no cameras, this
cannot be done with just a smartwatch. This poses a problem because the smartwatch
can not be used as a drop-in replacement for the smartphone. At the very least the
initial session info has to be receive by any IRMA client application. The IRMA session
cannot be setup unless the IRMA client app can communicate with the server.

I looked into several alternative methods of communications. However, the downside
of this is that both client and server have to be modified to allow for a new transfer
method. Before I solved this problem, as outlined in section 3.3, I looked at a few other
options.

One possibility is to communicate via sound. This should technically be possible since
Pied piper? is an example of software that can transfer data as sound so it is possible.
Another android specific program is quietmodem®. Downsides would be limited data
transfer speeds (due to noise) and easy eavesdropping of communications.

I could also communicate via a USB cable using adb (Android Debug Bridge), this is
a developer feature not normally enabled and has some security risks. Once an Android
device trusts a computer connected via a USB cable, that computer can issue arbitrary
commands to the device.

Other option was sending the initial session info over Bluetooth. Ideally only the
initial session info needs to be send over a second channel. This was a problem with
Bluetooth. On the smartwatch I tested, I could not use WiFi and Bluetooth at the same

"https://demo.irmacard.org/

2Technically it is possible to copy selected text to a clipboard and paste it into a text input field,
but this is impractical

Shttps://demo.irmacard.org/tomcat/irma_api_server/examples/issue-all.html

‘https://github.com/rraval/pied-piper

Shttps://github.com/quiet/org.quietmodem. Quiet

https://demo.irmacard.org/
https://demo.irmacard.org/tomcat/irma_api_server/examples/issue-all.html
https://github.com/rraval/pied-piper
https://github.com/quiet/org.quietmodem.Quiet

18 CHAPTER 3. PROOF OF CONCEPT

time. This means that, even if I could receive the session info, I could not connect to
the IRMA server unless it was also Bluetooth equipped and within range.

Another possibility would be NFC. This would allow the user to receive the session
info easily by simply holding the smartwatch in range of the NFC reader. Unfortunately
I ran into technical problems here. The specifications of the smartwatch imply that NFC
should work. When I tested it, I could not easily get an NFC reader to connect to the
device. The NFC reader could read other NFC devices (passport and OV-chipkaart),
but did not detect the smartwatch. Because I later solved the problem of receiving the
session info using another channel, as detailed in section 3.3, I did not continue looking
into communication using NFC.

Lastly I could receive the session info using the smartphone and send it through to
the smartwatch. This works as a proof of concept but is not practical. If a smartphone
can be used to receive the message, the user might as well use IRMA on his smartphone.

When paired with a phone, Android Wear applications cannot directly access the
Internet. They must communicate with their corresponding handheld app (either via
MessageApi or DataApi) and request that it executes whatever HT'TP requests you need.

There are libraries to work around this issue ¢ 7 by having the phone act as a proxy
to the internet without disabling Bluetooth. Since this would require the use of a paired
smartphone for internet connectivity, this would have no obvious advantage over using
IRMA on the smartphone.

Lastly it was impossible to display all the same information onscreen as the smart-
phone app. I could not reuse the existing user interfaces without modifications. This is
mainly because the screen size of even the largest Android wear smartwatch is a frac-
tion of the screen size of most smartphones.® The existing Android IRMA application
sometimes displays multiple paragraphs of text. This is used for explaining IRMA when
receiving attributes from within the app and when viewing the stored attributes. Display
paragraphs of texts works on a smartphone but is more complicated on a smartwatch.
Since the screen is small, the application can display only a limited amount of informa-
tion. Due to this it may be advisable to reverse as much screen estate when you need
to display text. To a certain amount you could use a smaller font, however this is not
ideal since this does make text harder to read. Requiring users to have perfect eyesight
is probably unreasonable. You could also make text fields scroll-able, allowing users to
use swiping gestures to move through text. In a later iteration of the app I used the
<scrollview> element liberally allow all elements to fit the user interface. The cost
here is that the user has to scroll to view all the required information.

Shttps://developers.google.com/android/reference/com/google/android/gms/wearable/
MessageApi

"https://developers.google.com/android/reference/com/google/android/gms/wearable/
DataApi

8see figure 1.1 for an example

https://developers.google.com/android/reference/com/google/android/gms/wearable/MessageApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/MessageApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/DataApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/DataApi

3.3. IRMAWEAR?2 19

IRMA Client

1. IRMA

Session JWT 7. Result

4. Session

QR 3. Session 6. Result

Token

IRMA App I irma_ api_ server
5. IRMA Session

Figure 3.2: Overview of existing IRMA infrastructure replicated from the online IRMA docu-
mentation at https://credentials.github.io/

3.3 IRMAWear2

After reaching major roadblocks with the previous smartwatch app, I decided to write
a new app. I named the latest iteration of my smartwatch App IRMAWear2’. The
approach used here is different from the previous app. In the previous app I modified
existing code until I got an application that ran. This did not work well because I spend
a lot of time fixing compile time messages due to small differences in the Android and
Android Wear ecosystem. This time I started with a fresh smartwatch application and
slowly incorporated elements from the existing IRMA infrastructure into it. Because of
this iterative process I had a working app from first to final iteration, which sped up
development.

Integration with existing IRMA infrastructure

Ideally, in order for IRMAWear2 to work with the same use cases as the smartphone, the
smartwatch would reuse the existing IRMA infrastructure. Figure 3.2 show the data
flow in an TRMA session. The arrows represent data flow and the numbers indicate
chronological order. JWT is short for JSON Web Token, a data format. '© The IRMA
Smartwatch App would take the same role as the existing IRMA App. Because of this
we only need to account for steps 4 and 5 in our proof of concept. In step 4 we obtain

9Source code is publicly available online at https://bitbucket.org/martijntje/irmawear2.
10See also https://tools.ietf.org/rfc/rfc7519.txt

https://credentials.github.io/
https://bitbucket.org/martijntje/irmawear2
https://tools.ietf.org/rfc/rfc7519.txt

20 CHAPTER 3. PROOF OF CONCEPT

information from irma_js on how to contact irma_api_server. Once a connection
withirma_api_server has been setup, no further contact with irma_js is needed for
the current session.

Normally the Smartphone App obtains session information by scanning a QR code
in step 4 from irma_js and in step five communicates with the irma_api_server via
HTTP.

I cannot treat IRMAWear? like a black box and mimic the behavior of the smartphone
app exactly. Step 5, the communication with the irma_api_server relies on a stable
internet connection. The only challenge here is forcing the smartwatch to use WiFi. 1
could recreate Step 5 without much effect. The smartwatch I tested could not connect
to both Bluetooth and WiFi at the same time. I could force the smartwatch to use of
WiFi by making the paired smartphone unavailable via Bluetooth, either by disabling
Bluetooth on the phone or by placing it out of range.

I could however, not do step 4 (receiving the session info via QR) without a slight
modification of the session. Displaying and scanning a QR code work well with a smart-
phone, however it relies on the use of a camera. Unlike smartphones, smartwatches lack
a camera and can therefore not scan QR codes. One method around this is using adb,
a developer feature that allows for easy interactions with an android device. Using adb
for communication works in principle but is not practical. Firstly it requires the smart-
watch user to know of this hidden feature. Secondly it requires the smartwatch user to
explicitly confirm trusting a computer each time it connects to a new computer. Thirdly
it requires a connection via a USB cable, which may not be possible while wearing the
watch. Lastly and perhaps most importantly, adb gives the connected computer full
shell access to a device, allowing it to easily compromise the devices’ security without
the user noticing.

To get around the problems with sending the session info I tested two modifications
of this information flow. Figure 3.3 shows the first modification. I add one extra step
where the smartwatch app sends its own contact info to irma_js.

irma_js is written using JavaScript and can be run, outside a web browser, from the
command line for testing. Normally these scripts display the session code using a QR
displayed with Unicode block characters. I modified this script!'! such that it outputs the
session info is outputted to stderr. This way the message can be piped to a shell script
which handles setting up the connection with the smartwatch. This method worked but
required the manual writing of JavaScript for individual uses. Compared to using the
demo website this process was not user-friendly.

The method I used here was to display this information as a qr code on the smart-
watch’s screen and read it using my laptops webcam. This qr code would contain the
smartwatch local ip address and port number it is listening on. This work as long as
irma_js and IRMAWear2 can communicate each other via IP. I accomplished this by
running my own slightly modified instance of irma_js (and irma_api_server). I did
this by running irma_js outside a web browser using the node command line version.

the nodejs modifications are available online at https://bitbucket.org/martijntje/irma_
makefile/src

https://bitbucket.org/martijntje/irma_makefile/src
https://bitbucket.org/martijntje/irma_makefile/src

3.3. IRMAWEAR?2 21

IRMA Client

1. IRMA

Session JWT 8. Result

5. Session .
3. Session 7. Result

Token

IRMAWear2 irma__api_ server
6. IRMA Session

Figure 3.3: Modification 1: Modifying irma_js to listen for an incoming connection first

IRMA Client

1. IRMA

Session JWT 9. Result

4. Session QR

AN

Helper irma_ js

6. Session Code
3. Session 8. Result

5. Contact info Token

IRMAWear2 - I irma_ api_server
7. IRMA Session

Figure 3.4: Modification 2: Adding a helper agent to help communication between irma_js
and the app

22 CHAPTER 3. PROOF OF CONCEPT

@ IRMAWear2

Figure 3.5: Screenshot of initial view of IRMAWear?2.

@.- IRMAWear2

Connected

Figure 3.6: Screenshots of the QR code displayed to set up a connection and active communi-
cation.

I tested a second workflow, showing in Figure 3.4, which solves the communication
problem by added an extra agent. This is explained in more detail in section 3.3. Al-
though this setup has more agents and steps, this setup works well and works with an
unmodified irma_js.

User Interface

I created a custom User Interface (UI) for IRMAWear2. This was necessary for two reasons.
Firstly because, as discussed in section 3.3, the app requires a modified workflow because
it can’t read QR codes. Secondly because of its small display fewer Ul elements fit on
the screen at once. To avoid navigating through menus or using small text I have opted
to nest the main user interface in a scrollview element. The result of this is that you
can access most elements by scrolling using the touch screen.

The main view, without scrolling looks as displayed in figure 3.5. This view the title
of the app, and either a connect button when idle or a status message when busy.

When clicking the connect button the UI displays a QR code, as shown in figure
3.6. The text above the qr text is the same as the content of the qr code and is only
used for human feedback. After a connection has been setup and the session with
irma_api_server has started, the request will be displayed onscreen like in figure 3.7.
Some graphical elements do not fit the small screen space, however all interactions work

3.3. IRMAWEAR?2 23

Disclose attributes? Disclose attributes? Disclose attributes?

v

over18 yes v
Are you sure you

The following familyname TETP.. hd want to disclose
attributes will be sent these attributes?
tn tha uarifiar tacten Ao e e e)

NO QK NO OK NO 0K

Figure 3.7: Screenshots of dialog for disclose or attributes.

[WIemuer
Name
Valid until: Mar || Mar 8, 2018
Issued by Mijn MijnOverheid.nl
firstnames Mari Martijn Allert
firstname Mar Martijn
familyname Terplje Terpstra
prefix

Figure 3.8: Two screenshots showing the interface for viewing attributes in IRMAWear?2.

Student Card

Figure 3.9: Screenshot of Interface below attribute view

properly.

Once the user has attributes stored using the app, the user can scroll down select
the attribute from the list and look at its values as seen in figure 3.8.

Below the list of attributes there are two more buttons as seen in figure 3.9. The
quit button it there for convenience, and the “delete all credentials” allow a user to reset
the stored information of the application.

24 CHAPTER 3. PROOF OF CONCEPT

Communication setup

For the smartwatch to use IRMA properly it is important that the irma_api_server
or helper program can easily contact the smartwatch. The easiest way is to use WiFi
with both parties connected on the same network. To create a stable environment, I use
create_ap'?, a script that easily sets up a quick WiFi access point on my laptop for
the smartwatch to connect to. This is advantageous to simply connecting both devices
to the same network directly for two reasons. Firstly my laptop can connect to certain
networks the smartwatch cannot, most noticeably WPA Enterprise networks. Secondly
my laptop has a better range for WiFi than the smartwatch.

To make the modification described in figure 3.3 work I compiled my own version
if irma_api_server and irma_js. This build included script to communicate to the
smartwatch over adb and custom JavaScript to allow the outputting via a different
source than displaying a QR code. To automate the process of setting up a custom
IRMA server, using make, I created a makefile!® to automatically setup a local server.
To test the modification described in figure 3.3 I wrote a small script, qr_bridge'® that
first, reads a qr code using a webcam, and then captures a qr code from the computer
screen. This allows the smartwatch to be used with unmodified servers. The script relies
on zbar'® for quickly parsing qr codes.

App dependencies

In order to display a QR code on the smartwatch I make use of the zxing!'” li-
brary. I did not investigate any other libraries because I did not find any fault with
this one. Besides that IRMAWear2 relies on the IRMA libraries credentials_apil'®,
credentials_idemix!?, irma_api_commonm, and irma_configurationm, which are
also used in the smartphone app.

T also imported the code for the smartphone implementation, irma_android_cardemu
with a few modifications to make it work as a library instead of a standalone application.

I had to add the following line to its build.gradle file to allow it to compile as a library

22

apply plugin: ’com.android.library’

In addition to treading the smartphone app as a library, I changed the names of
the MainActivity class and activity_main activity to avoid name conflicts with the

2https://github.com/oblique/create_ap

3files are available online'*
Yhttps://bitbucket.org/martijntje/qr_bridge
http://zbar.sourceforge.net/
"https://github.com/zxing/zxing
Bhttps://github.com/credentials/credentials_api
Yhttps://github. com/credentials/credentials_idemix
2Onttps://github.com/credentials/irma_api_common
“nttps://github.com/credentials/irma_configuration
https://github. com/credentials/irma_android_cardemu

https://github.com/oblique/create_ap
https://bitbucket.org/martijntje/qr_bridge
http://zbar.sourceforge.net/
https://github.com/zxing/zxing
https://github.com/credentials/credentials_api
https://github.com/credentials/credentials_idemix
https://github.com/credentials/irma_api_common
https://github.com/credentials/irma_configuration
https://github.com/credentials/irma_android_cardemu

3.4. LIMITATIONS 25

smartwatch versions of these files. I could also have deleted these files for the same
result.

New Code

Besides reusing the existing IRMA software, IRMAWear2 has 3 original classes. To
avoid littering the code base with classes, I have written most code in a single class,
MainActivity. In addition to the main class, I had to create two more classes for
specific tasks.

Android will automatically kill any application that takes longer than 5 second to
respond to user input. To prevent this you have to create a new thread. Since multi
threading requires new threads to be their own class, I had to introduce 2 additional
classes. The BackgroundClient class listens on a socket and handles the initial session
info message. The class AsyncQRUpdate generates the QR images used in figure 3.6.
While the creation of the qr code could run on the main thread, it occasionally lags
enough that if ran on the main thread would crash the entire application.

3.4 Limitations

While the produced app show that IRMA can run on a smartwatch nicely, it does have
some limitations. Most obviously it was only tested on a single device. I suspect the app
will behave similarly on different Android Wear watches, but could well have some display
issues as different watch may have a smaller or differently shaped display (e.g. there are
smartwatches with a round instead of rectangular display). I had to simplify some
interactions, to make them work on a smartwatch. The dialog for disclosing and issuing
attributes do not have a “more information” option, as is present in the smartphone
version, and the option to delete credentials does so without displaying a confirmation
dialog. The Dialog used during the issuing and verifying of credentials is functional if
you know what is going on but cannot display the full information. I wrapped the Ul
elements wrapped in a purposefully over sized scrollview. This means that user can
scroll down multiple screens beyond the lowest element. This is because of a quirk in the
Ul element. The ExpandableList element cannot be of variable size inside a variable size
view. Either the list of credentials large enough to accommodate all possible attributes
fully expanded or the scroll view is large enough to accommodate for an expanding
ExpandableList. A fixed sized attribute list is less desirable because this would mean
that any Ul elements below the list would be impractical to use.

Chapter 4

Results & Future work

4.1 Results

In this thesis I have shown attribute-based credentials to work on a smartwatch. I
have done so by creating a proof of concept that can interact with the existing IRMA
infrastructure to obtain, manage and reveal attributes with other parties. Due to the
nature of the smartwatch I had to change the communication channels. Rather than the
app reading the session info from the server to start the IRMA session, the smartwatch
now first has to send its own information to the server or party acting as a proxy to the
server.

The only thing exposed by intercepting this new initial message is how to contact
the smartwatch. Although this did slightly change the interaction a user has with an
app, since no underlying cryptographic protocols were changed, this did not impact the
security. At best this makes it slightly easier to set up a man-in-the-middle scenario. As
long as the original protocol is resistant against man-in-the-middle attacks, this setup
should also be resistant.

4.2 Future Work

A major remaining issue is usability. There is the issue of finding a practical use case. 1
have shown that a smartwatch is a viable alternative in use cases where a smartphone was
already viable. The use of a smartwatch for attribute-based credentials is easy to justify
with a use case where the use of a smartphone is difficult but the use of a smartwatch is
not.

While a smartwatch can be used, a smartphone still has advantages. The smartphone
is more ubiquitous, has a larger screen and allows for text input.

Besides finding an appropriate use case, there were technical issues that may be
different on other devices. There were some technical issues I encountered that may not
be present on other smartwatch models. The smartwatch did not allow for text input,
limiting the complexity of user interaction. The watch I tested ran Android Wear 1.5.
Recently Google released Android Wear 2.0. This new operating system may solve some

26

4.2. FUTURE WORK 27

technical problems encountered. For instance this new operating system allows for the
use of an on-screen keyboard controlled by gestures. Another roadblock I encountered
was the difficulty using the smartwatches communication interfaces independently. The
smartwatch communicates with the smartphone using either WiFi or Bluetooth. It can
however not use WiFi and Bluetooth at the same time and will not connect with a third
party unless the user explicitly disables communications with the phone. Watches based
of other operating systems like WatchOS or Tizen might not have the same technical
problems. If a new smartwatch also includes a fully featured web browser, it could be
reasonable create an app that interacts with the IRMA demo website.

I designed the smartwatch app as a proof of concept without prior knowledge of
android development. As a result of this, the user interface is lacking. The user interface
was not optimized for display on a smartwatch, requiring scrolling to view parts of user
interface elements.

The programming was done to produce a working app in a short time, rather than
ensuring long term quality. Because of this, the app was not designed to run on any
smartwatch than the one I used. Furthermore the app relies on the current IRMA
infrastructure, so any future changes to the IRMA protocols would cause the app to
stop working with existing infrastructure.

Currently there is no clear use case for attribute-based credentials where the usage
of a smartphone is difficult but the usage of a smartwatch is not.

I have not fully explored all possibilities for setting up a IRMA session using a
smartwatch. It may be possible to set up a connection without the smartwatch having
to announce its contact info first, like is the case with a smartphone. This should be
possible with NFC, but I did not explore this. It may be useful to allow for authentication
without confirmation.

e.g. A user may want to automatically confirm age verification if he knows the session
can only be initiated when the server is physically present.

Bibliography

Gergely Alpar and Jaap-Henk Hoepman. A secure channel for attribute-based cre-
dentials:[short paper]. In Proceedings of the 2013 ACM workshop on Digital identity
management, pages 13-18. ACM, 2013.

Gergely Alpar and Bart Jacobs. Towards practical attribute-based identity manage-
ment: The irma trajectory. In IFIP Working Conference on Policies and Research
in Identity Management, pages 1-3. Springer, 2013.

Gergely Alpar, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs, Wouter
Lueks, and Sietse Ringers. Irma: practical, decentralized and privacy-friendly iden-
tity management using smartphones.

Souheil Bcheri, Norbert Goetze, Monika Orski, and Harald Zwingelberg. D6. 1 ap-
plication description for the school deployment. Technical report, Technical report,
ABCA4Trust, 2012.

John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In Security and Privacy, 2007. SP’07. IEEE Symposium on,
pages 321-334. IEEE, 2007.

Jan Camenisch, Maria Dubovitskaya, Anja Lehmann, Gregory Neven, Christian
Paquin, and Franz-Stefan Preiss. Concepts and languages for privacy-preserving
attribute-based authentication. In Policies and research in identity management,
pages 34-52. Springer, 2013.

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. Advances in Cryptolo-
gyEUROCRYPT 2001, pages 93-118, 2001.

Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proceedings of the 9th ACM conference on Com-
puter and communications security, pages 21-30. ACM, 2002.

Melissa Chase and Sherman SM Chow. Improving privacy and security in multi-
authority attribute-based encryption. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 121-130. ACM, 2009.

28

BIBLIOGRAPHY 29

[10]

[11]

[15]

[19]

[20]

[21]

Manu DRIJVERS, Jaap-Henk HOEPMAN, and Bart JACOBS. Efficient delegation
of idemix credentials. 2014.

Linke Guo, Chi Zhang, Jinyuan Sun, and Yuguang Fang. Paas: A privacy-preserving
attribute-based authentication system for ehealth networks. In Distributed Comput-
ing Systems (ICDCS), 2012 IEEE 32nd International Conference on, pages 224-233.
IEEE, 2012.

Brinda Hampiholi and Gergely Alpar. Privacy-preserving webshopping with at-
tributes.

Abendroth Joerg, Vasiliki Liagkou, Apostolis Pyrgelis, Christoforos Raptopoulos,
Ahmad Sabouri, Eva Schlehahn, Yannis Stamatiou, and Harald Zwingelberg. D7. 1
application description for students. 2012.

Merel Koning, Paulan Korenhof, and Gergely Alpar. The abc of abc-an analysis
of attribute-based credentials in the light of data protection, privacy and identity-.
2014.

Wei-Han Lee and Ruby Lee. Implicit sensor-based authentication of smartphone
users with smartwatch. In Proceedings of the Hardware and Architectural Support
for Security and Privacy 2016, page 9. ACM, 2016.

Wei-Han Lee, Xiaochen Liu, Yilin Shen, Hongxia Jin, and Ruby B Lee. Secure pick
up: Implicit authentication when you start using the smartphone. In Proceedings
of the 22nd ACM on Symposium on Access Control Models and Technologies, pages
67-78. ACM, 2017.

Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. When good
becomes evil: Keystroke inference with smartwatchl. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, pages 1273~
1285. ACM, 2015.

Wouter Lueks, Gergely Alpar, Jaap-Henk Hoepman, and Pim Vullers. Fast re-
vocation of attribute-based credentials for both users and verifiers. Computers €
Security, 67:308-323, 2017.

Hemanta K Mayji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signa-
tures. In Topics in Cryptology—CT-RSA 2011, pages 376-392. Springer, 2011.

Christian Paquin and Greg Zaverucha. U-prove cryptographic specification v1. 1.
Technical Report, Microsoft Corporation, 2011.

Ahmad Sabouri, Ioannis Krontiris, and Kai Rannenberg. Attribute-based creden-
tials for trust (abcdtrust). In International Conference on Trust, Privacy and Se-
curity in Digital Business, pages 218-219. Springer, 2012.

30

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHY

Hai-bo Shen and Fan Hong. An attribute-based access control model for web ser-
vices. In Parallel and Distributed Computing, Applications and Technologies, 2006.
PDCAT’06. Seventh International Conference on, pages 74-79. IEEE, 2006.

Koen van Ingen, E van Gelderen, and BPF Jacobs. Attribute-based authentication
& signatures for regulating home access. 2016.

Pim Vullers and Gergely Alpar. Efficient selective disclosure on smart cards using
idemix. In IFIP Working Conference on Policies and Research in Identity Manage-
ment, pages 53—67. Springer, 2013.

He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. Mole: Motion leaks
through smartwatch sensors. In Proceedings of the 21st Annual International Con-
ference on Mobile Computing and Networking, pages 155-166. ACM, 2015.

Chao Xu, Parth H Pathak, and Prasant Mohapatra. Finger-writing with smart-
watch: A case for finger and hand gesture recognition using smartwatch. In Pro-
ceedings of the 16th International Workshop on Mobile Computing Systems and
Applications, pages 9-14. ACM, 2015.

Glossary

Credentials
Idemix

Selective disclosure
U-Prove

Unlinkability

Zero-knowledge proof

cryptographically signed attributes
Attribute-based credential scheme
(Used in IRMA)

Ability to disclose only a subset of
all attributes during authentication
Attribute-based credential scheme
Inability by other parties to know
two sessions have the same partici-
pants

Protocol for proving knowledge of a
fact without reveal that fact

IBC Identity-based credentials Authentication based on Identity
management

IRMA I Reveal My Attributes Ecosystem for attribute-based cre-
dentials

ABC Attribute-based credentials Authentication using attributes

JWT Java Web Token Data format used by irma_js and
irma_api_server

adb Android Debug Bridge Developer tool for interacting with
Android and Android wear devices

IDE Integrated development envi- Set of integrated software for devel-

ronment oping software

UI User Interface Part of software that directly inter-
acts with user

apk Android Application Package format for distributed Android soft-
ware

nodejs Node.Js Popular JavaScript Library

31

Software sources

IRMA

Demo website
Main Repository
Android App
irma_ api_ server
irma__js

https:
https:
https:
https:
https:

//demo.irmacard.org/
//github.com/credentials/
//github.com/credentials/irma_android_cardemu
//github.com/credentials/irma_api_server
//github.com/credentials/irma_js

Newly written software

Helper scripts https://bitbucket.org/martijntje/abc-wear/
IRMAWear https://bitbucket.org/martijntje/irmawear/.
IRMAWear2 https://bitbucket.org/martijntje/irmawear?2
Server setup Makefile https://bitbucket.org/martijntje/irma_makefile
QRProxy https://bitbucket.org/martijntje/qrproxy
qr__bridge https://bitbucket.org/martijntje/qr_bridge
Watch test https://bitbucket.org/martijntje/watchtest
Other Resources

Pied Piper https://github.com/rraval/pied-piper
org.quietmodem.Quiet https://github.com/quiet/org.quietmoden.Quiet
create_ap https://github.com/oblique/create_ap

zxing https://github.com/zxing/zxing

zbar http://zbar.sourceforge.net/

32

https://demo.irmacard.org/
https://github.com/credentials/
https://github.com/credentials/irma_android_cardemu
https://github.com/credentials/irma_api_server
https://github.com/credentials/irma_js
https://bitbucket.org/martijntje/abc-wear/
https://bitbucket.org/martijntje/irmawear/
https://bitbucket.org/martijntje/irmawear2
https://bitbucket.org/martijntje/irma_makefile
https://bitbucket.org/martijntje/qrproxy
https://bitbucket.org/martijntje/qr_bridge
https://bitbucket.org/martijntje/watchtest
https://github.com/rraval/pied-piper
https://github.com/quiet/org.quietmodem.Quiet
https://github.com/oblique/create_ap
https://github.com/zxing/zxing
http://zbar.sourceforge.net/

Specifications Sony Smartwatch 3

Specification as available from the manufacturer’s website!

Requirements Android 4.3 and onwards / An-
droid™Wear?

Water protected 3

IP68 rated

Performance Quad ARM A7, 1.2 GHz/ 512 MB
RAM, 4 GB eMMC

Sensors Ambient light sensors / Accelerome-
ter / Compass / Gyro / GPS

Battery 420mA (up to 2 days’ normal use)

Optional accessories Wrist straps in various colors (sold
separately)

Color choices (wrist strap) Black / Lime / Stainless steel /
Leather Brown / Leather Black

Controls Voice, touch, and gesture input /
Microphone / On/off/wake-up key

Connectors Bluetooth®4.0 / NFC / Micro USB
/ Wi-Fi

"https://www.sonymobile.com/us/products/smart-products/smartwatch-3-swr50/
specifications/

2SmartWatch 3 SWR50 supports up to Android™Wear 1.5. Android Wear 2.0 and onwards are not
supported.

3The SmartWatch 3 is water and dust protected as long as you follow a few simple instructions: all
ports and attached covers are firmly closed; you can’t take the smartwatch deeper than 1.5m of water
and for longer than 30 minutes; and the water should be fresh water. Casual use in chlorinated pools is
permitted provided it’s rinsed in fresh water afterwards. No seawater and no salt water pools. Abuse
and improper use of device will invalidate warranty. The smartwatch has an Ingress Protection rating
of IP68.

33

https://www.sonymobile.com/us/products/smart-products/smartwatch-3-swr50/specifications/
https://www.sonymobile.com/us/products/smart-products/smartwatch-3-swr50/specifications/

Specification Samsung J100H

The smartphone I used alongside the smartwatch is a Samsung J100H. This is a model
I personally own. The specifications were taken from Samsungs website? and manually
verified on the phone using the Device explorer app °.

Processor
CPU Speed 1.2GHz
CPU Type Dual-Core
Display

Size (Main Display)
Resolution (Main Display)

4.3 inch (109.2mm)
480 x 800 (WVGA)

Technology (Main Display) TFT

Color Depth (Main Display) 16M

S Pen Support No
Camera

Video Recording Resolution

HD (1280 x 720)@30fps

Main Camera - Resolution CMOS 5.0 MP
Front Camera - Resolution CMOS 2.0 MP
Main Camera - Flash Yes
Main Camera - Auto Focus Yes

Memory
RAM Size (GB) 0.5 GB
ROM Size (GB) 4 GB
Available Memory (GB) 2.04 GB

External Memory Support

MicroSD (Up to 128GB)

‘http://www.samsung. com/my/support/model/SM-J100HZBDXME
Shttps://github.com/iamtrk/Device-Explorer

34

http://www.samsung.com/my/support/model/SM-J100HZBDXME
https://github.com/iamtrk/Device-Explorer

Network /Bearer

Multi-SIM Dual-SIM
SIM size Micro-SIM (3FF)
Infra 2G GSM, 3G WCDMA
2G GSM GSM850, GSM900, DCS1800,

PCS1900
3G UMTS B1(2100), B8(900)

Connectivity

USB Version USB 2.0

Location Technology
Earjack

MHL

Wi-Fi

Wi-Fi Direct

DLNA Support
Bluetooth Version
NFC

Bluetooth Profiles

GPS, Glonass

3.5mm Stereo

No

802.11 b/g/n 2.4GHz

Yes

No

Bluetooth v4.0

No

A2DP, AVRCP, DI, HFP, HID,
HOGP, HSP, MAP, OPP, PAN,
PBAP

PC Sync. Kies
General Information
Color Blue, Black, White

Form Factor

Touchscreen Bar

Physical specification

Dimension (HxWxD, mm)

129 x 68.2 x 8.9

Weight (g) 122
Battery

Internet Usage Time(3G) Upto9

(Hours)

Internet Usage Time(Wi-Fi) Up to 12

(Hours)

Video Playback Time (Hours) Upto9

Standard Battery Capacity 1850

(mAh)

Removable Yes

Audio Playback Time (Hours) Up to 40

Talk Time (3G WCDMA) Up to 10

(Hours)

35

36

SPECIFICATION SAMSUNG J100H

Audio and Video

Video Playing Format

Video Playing Resolution
Audio Playing Format

MP4, M4V, 3GP, 3G2, MKV,
WEBM

HD (1280 x 720)@30fps

MP3, M4A, 3GA, AAC, OGG,
OGA, WAV, AMR, AWB, FLAC,
MID, MIDI, XMF, MXMF, IMY,
RTTTL, RTX, OTA

S-Voice
Mobile TV
OS

Sensors

Other
No
No
Android

Accelerometer, Proximity Sensor

	Contents
	Introduction
	Smartwatches
	Authentication
	IRMA Project
	Related work

	Methodology
	Relevant Parties
	Technical requirements of use cases
	Role of smartwatch during authentication
	Development of Proof of Concept

	Proof of Concept
	Initial Android wear apps
	IRMAWear
	IRMAWear2
	Limitations

	Results & Future work
	Results
	Future Work

	Bibliography
	Glossary
	Software sources
	Specifications Sony Smartwatch 3
	Specification Samsung J100H

