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Over the last decade, researchers have extensively explored the vulnerabilities of Android malware detectors to 
adversarial examples through the development of evasion attacks; however, the practicality of these attacks in 
real-world scenarios remains arguable. The majority of studies have assumed attackers know the details of the 
target classifiers used for malware detection, while in reality, malicious actors have limited access to the target 
classifiers. This paper introduces EvadeDroid, a problem-space adversarial attack designed to effectively evade 
black-box Android malware detectors in real-world scenarios. EvadeDroid constructs a collection of problem-

space transformations derived from benign donors that share opcode-level similarity with malware apps by 
leveraging an n-gram-based approach. These transformations are then used to morph malware instances into 
benign ones via an iterative and incremental manipulation strategy. The proposed manipulation technique is 
a query-efficient optimization algorithm that can find and inject optimal sequences of transformations into 
malware apps. Our empirical evaluations, carried out on 1𝐾 malware apps, demonstrate the effectiveness of our 
approach in generating real-world adversarial examples in both soft- and hard-label settings. Our findings reveal 
that EvadeDroid can effectively deceive diverse malware detectors that utilize different features with various 
feature types. Specifically, EvadeDroid achieves evasion rates of 80%–95% against DREBIN, Sec-SVM, ADE-MA, 
MaMaDroid, and Opcode-SVM with only 1–9 queries. Furthermore, we show that the proposed problem-space 
adversarial attack is able to preserve its stealthiness against five popular commercial antiviruses with an average 
of 79% evasion rate, thus demonstrating its feasibility in the real world.
1. Introduction

Machine Learning (ML) continues to show promise in detecting so-

phisticated and zero-day malicious programs (Abri et al., 2019; Ahmed 
et al., 2009; Bai et al., 2014; Eskandari et al., 2013; Firdausi et al., 2010; 
Raff and Nicholas, 2017; Venkatraman et al., 2019). However, despite 
the effectiveness of ML-based malware detectors, these defense strate-

gies are vulnerable to evasion attacks (Li et al., 2021a). More concretely, 
attackers aim to deceive ML-based malware classifiers by transforming 
existing malware into adversarial examples (AEs) via a series of manip-

ulations. The proliferation of Android malware (Castillo and Samani, 
2021) has extended research into novel evasion attacks to strengthen 
malware classifiers against AEs (Berger et al., 2020; Cara et al., 2020; 
Chen et al., 2017, 2018, 2019; Demontis et al., 2017; Grosse et al., 
2017; Li et al., 2020; Liu et al., 2019; Pierazzi et al., 2020; Rathore et 
al., 2021; Xu et al., 2021; Yang et al., 2017). However, this endeavor, 
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which also exists for other platforms, such as Windows, poses its own 
set of challenges, which we elaborate on further below.

The first challenge pertains to the feature representation of Android 
applications (apps). Making a slight modification in the feature rep-

resentation of a malware app may break its functionality (Li et al., 
2021a) as malware features extracted from Android Application Pack-

ages (APKs) are usually discrete (e.g., app permissions) instead of con-

tinuous (e.g., pixel intensity in a grayscale image). One plausible solu-

tion is to manipulate the features extracted from the Android Manifest 
file (Berger et al., 2020; Grosse et al., 2017; Rathore et al., 2021); how-

ever, the practicality of such manipulations in generating executable 
AEs is questionable for the following reasons. Firstly, modifying features 
from the Android Manifest (e.g., content providers, intents, etc.) cannot 
guarantee the executability of the original apps (i.e., malicious pay-

load) (Khormali et al., 2019; Li et al., 2020). Secondly, adding unused 
features to the Manifest file can be discarded by applying pre-processing 
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techniques (Pierazzi et al., 2020). Finally, advanced Android malware 
detectors (e.g., Ma et al., 2019; Onwuzurike et al., 2019) primarily rely 
on the semantics of Android apps, which are represented by the Dalvik 
bytecode rather than the Manifest files (Berger et al., 2020; Chen et al., 
2019).

Another challenge is the limitations of feature mapping techniques 
used to convert Android apps from the problem space (i.e., input space) 
to feature space. These techniques are not reversible, meaning that 
feature-space perturbations cannot be directly translated into a ma-

licious app (Pierazzi et al., 2020). To address inverse feature-mapping 
problem, a common approach is to manipulate real-world malware apps 
using problem-space transformations that correspond to the features 
used in ML models. By applying these feature-based transformations to 
Android apps, adversaries can create hazardous evasion attacks (Cara 
et al., 2020; Chen et al., 2019; Pierazzi et al., 2020; Yang et al., 2017). 
However, finding suitable transformations that satisfy problem-space 
constraints is not straightforward (Pierazzi et al., 2020): Firstly, cer-

tain transformations (e.g., Li and Li, 2020; Li et al., 2021b) intended 
to mimic feature-space perturbations may not result in feasible AEs 
because they disregard feature dependencies from real-world objects. 
Additionally, some transformations (e.g., Cara et al., 2020; Pierazzi et 
al., 2020) that meet problem-space constraints for manipulating real ob-

jects may introduce undesired or incompatible payloads into malware 
apps. These types of transformations not only might render the pertur-

bations different from what the attacker expects (Cara et al., 2020) but 
can also lead to the crashing of adversarial malware apps.

The final challenge revolves around current methods (Berger et al., 
2020; Cara et al., 2020; Chen et al., 2017, 2018, 2019; Demontis et 
al., 2017; Grosse et al., 2017; Li and Li, 2020; Li et al., 2021b; Liu et 
al., 2019; Pierazzi et al., 2020; Rathore et al., 2021; Xu et al., 2021) 
that generate AEs based on the specifics of target malware detectors, 
such as the ML algorithm and feature set. These approaches assume 
that attackers possess either Perfect Knowledge (PK) or Limited Knowl-

edge (LK) about the target classifiers. However, in real-world scenarios, 
adversaries generally have Zero Knowledge (ZK) about the target mal-

ware detectors, which aligns more closely with reality since antivirus 
systems operate as black-box engines that are queried (Rosenberg et 
al., 2020). Some studies (Croce et al., 2022; Xu et al., 2021; Zhang 
et al., 2021) have explored semi-black-box settings to generate AEs by 
leveraging feedback from the target detectors. Nevertheless, these ap-

proaches suffer from inefficiency in terms of evasion costs, including 
the high number of queries required and the extent of manipulation 
applied to the input sample. Efficient querying is crucial due to the as-

sociated costs (Rosenberg et al., 2020) and the risk of detectors blocking 
suspicious queries. Additionally, minimizing manipulation is desired 
as excessive manipulations could impact the malicious functionality of 
apps (Demontis et al., 2017).

1.1. Contributions

In response to the challenges outlined earlier, we propose a com-

prehensive and generalized evasion attack called EvadeDroid, which 
can bypass black-box Android malware classifiers through a two-step 
process: (i) preparation and (ii) manipulation. The first step involves im-

plementing a donor selection technique within EvadeDroid to create 
an action set comprising a collection of problem-space transformations, 
i.e., code snippets known as gadgets. These gadgets are derived by per-

forming program slicing on benign apps (i.e., donors) that are publicly 
available. By injecting each gadget into a malware app, specific pay-

loads from a benign donor can be incorporated into the malware app. 
Our proposed technique utilizes an n-gram-based similarity method to 
identify suitable donors, particularly benign apps that exhibit similar-

ities to malware apps at the opcode level. Applying transformations 
derived from these donors to malware apps can enable them to ap-

pear benign or move them towards blind spots of ML classifiers. This 
2

approach aims to achieve the desired outcome of introducing transfor-
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mations that not only ensure adherence to problem-space constraints 
(i.e., preserved semantics, robustness to preprocessing, and plausibil-

ity (Pierazzi et al., 2020)) but also lead to malware classification errors.

In the manipulation step, EvadeDroid uses an iterative and incre-

mental manipulation strategy to create real-world AEs. This procedure 
incrementally perturbs malware apps by applying a sequence of trans-

formations gathered in the action set into malware samples over several 
iterations. We propose a search method to randomly choose suitable 
transformations and apply them to malware apps. The random search 
algorithm, which moves malware apps in the problem space, is guided 
by the labels of manipulated malware apps. These labels are specified 
by querying the target black-box ML classifier. Our contributions can be 
summarized as follows:

• We propose a black-box evasion attack that generates real-world 
Android AEs that adhere to problem-space constraints. To the best 
of our knowledge, EvadeDroid is the pioneer study in the Android 
domain that successfully evades ML-based malware detectors by di-

rectly manipulating malware samples without performing feature-

space perturbations.

• We demonstrate that EvadeDroid is a query-efficient attack capa-

ble of deceiving various black-box ML-based malware detectors 
through minimal querying. Specifically, our proposed problem-

space adversarial attack achieves evasion rates of 89%, 85%, 86%, 
95%, and 80% against DREBIN (Arp et al., 2014), Sec-SVM (De-

montis et al., 2017), ADE-MA (Li and Li, 2020), MaMaDroid (On-

wuzurike et al., 2019), and Opcode-SVM (Jerome et al., 2014), 
respectively. This research represents one of the pioneering efforts 
in the Android domain, introducing a realistic problem-space at-

tack in a ZK setting.

• Our proposed attack can operate with either soft labels (i.e., confi-

dence scores) or hard labels (i.e., classification labels) of malware 
apps, as specified by the target malware classifiers, to generate AEs.

• We assess the practicality of the proposed evasion attack under 
real-world constraints by evaluating its performance in deceiving 
popular commercial antivirus products. Specifically, our findings 
indicate that EvadeDroid can significantly diminish the effective-

ness of five popular commercial antivirus products, achieving an 
average evasion rate of approximately 79%.

• In the spirit of open science and to allow reproducibility, we have 
made our code available at https://github .com /HamidBostani2021 /
EvadeDroid

The rest of the paper is organized as follows: §2 reviews the most im-

portant relevant studies, particularly in the Android domain. In §3, 
we provide background information on fundamental concepts, specif-

ically ML-based malware detectors, and briefly discuss the practical 
transformations that can be used for manipulating APKs. §4 initiates 
by reviewing the threat model and articulating the problem definition 
for EvadeDroid. Following this, an illustration of the proposed black-

box attack will be presented. We evaluate EvadeDroid’s performance 
in §5. Limitations and future work, along with a brief conclusion, are 
presented in §6 and §7.

2. Related work

In the past few years, several studies have explored AEs in the con-

text of malware, particularly in the Windows domain. For example, 
Demetrio et al. (2021) generated AEs in a black-box setting by applying 
structural and behavioral manipulations. Song et al. (2022) employed 
code randomization techniques to generate real-world AEs. They pro-

posed an adversarial framework guided by reinforcement learning to 
model the action selection problem as a multi-armed bandit problem. 
Sharif et al. (2019) used binary diversification techniques to evade mal-

ware detection. Khormali et al. (2019) bypassed visualization-based 

malware detectors by applying padding and sample injection to mal-
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Table 1

Evasion attacks in ML-based Android Malware Detectors.

Relevant Papers
Attacker’s Knowledge Perturbation Type

PK LK ZK Problem Space Feature Space

Xu et al. (2023) ✓ ✓ ✓
He et al. (2023) ✓ ✓ ✓
Li et al. (2023) ✓ ✓ ✓
Croce et al. (2022) ✓ ✓
Zhang et al. (2021) ✓ ✓ ✓
Rathore et al. (2021) ✓ ✓ ✓
Chen et al. (2017) ✓ ✓ ✓
Demontis et al. (2017) ✓ ✓ ✓ ✓ ✓
Grosse et al. (2017) ✓ ✓ ✓
Chen et al. (2018) ✓ ✓ ✓
Liu et al. (2019) ✓ ✓
Xu et al. (2021) ✓ ✓
Berger et al. (2020) ✓ ✓ ✓ ✓
Pierazzi et al. (2020) ✓ ✓ ✓
Chen et al. (2019) ✓ ✓ ✓
Cara et al. (2020) ✓ ✓ ✓
Yang et al. (2017) ✓ ✓ ✓
Li et al. (2021b) ✓ ✓ ✓ ✓
Li and Li (2020) ✓ ✓ ✓ ✓
EvadeDroid ✓ ✓
ware samples. Demetrio et al. (2019) generated adversarial malware 
by making small manipulations in the file headers of malware samples. 
Rosenberg et al. (2020) presented a black-box attack that perturbs API 
sequences of malware samples to mislead malware classifiers.

While evasion attacks have made significant advancements in the 
Windows domain, their effectiveness in the Android domain may be 
limited because their manipulations might not be appropriate for alter-

ing Android malware apps in a way that can deceive existing Android 
malware detectors. Over the last few years, various studies have been 
performed to generate AEs in the Android ecosystem to anticipate pos-

sible evasion attacks. Table 1 illustrates the threat models that were 
considered by researchers. Note that in the categorization of studies un-

der the ZK setting, adversaries should not only lack access to the details 
of the target model but also have no assumptions (e.g., types of fea-

tures utilized by detectors) about it. To study feature-space AEs, Croce 
et al. (2022) introduced Sparse-RS, a query-based attack that generated 
AEs using a random search strategy. Rathore et al. (2021) generated 
AEs by using Reinforcement Learning to mislead Android malware de-

tectors. Chen et al. (2017, 2018) implemented different feature-based 
attacks (e.g., brute-force attacks) to evaluate their defense strategies. 
Demontis et al. (2017) presented a white-box attack to perturb feature 
vectors of Android malware apps regarding the most important features 
that impact the malware classification. Liu et al. (2019) introduced an 
automated testing framework based on a Genetic Algorithm (GA) to 
strengthen ML-based malware detectors. Xu et al. (2021) proposed a 
semi-black-box attack that perturbs features of Android apps based on 
the simulated annealing algorithm. The above attacks seem impractical 
as they do not show how real-world apps can be reconstructed based on 
feature-space perturbations.

To investigate problem-space manipulations, Grosse et al. (2017)

manipulated the Android Manifest files based on the feature-space per-

turbations. Berger et al. (2020) and Li and Li (2020); Li et al. (2021b)

used a similar approach; however, they considered both Manifest files 
and Dalvik bytecodes of Android apps in their modification methods. 
Zhang et al. (2021) introduced an adversarial attack called Shadow-

Droid to generate AEs using a substitute model built on permissions 
and API call features. Xu et al. (2023) introduced GenDroid, a query-

based attack that employed GA by integrating an evolutionary strategy 
based on Gaussian Process Regression. The practicality of these attacks 
is also questionable because the generated AEs might not satisfy all the 
constraints in the problem space (Pierazzi et al., 2020) (e.g., plausi-

bility and robustness to preprocessing). For instance, Li et al. (2021b)
3

reported that 5 out of 10 manipulated apps that were validated could 
not run successfully. Furthermore, unused features injected into APKs 
by the attacks discussed in Berger et al. (2020); Grosse et al. (2017); Li 
and Li (2020); Li et al. (2021b); Xu et al. (2023); Zhang et al. (2021)

not only raise plausibility concerns but also render them susceptible to 
elimination by preprocessing operator (Pierazzi et al., 2020), especially 
those features incorporated into Manifest files.

In addition to the aforementioned studies, some (e.g., Cara et al., 
2020; Chen et al., 2019; Pierazzi et al., 2020; Yang et al., 2017) have 
considered the inverse feature-mapping problem when presenting prac-

tical AEs in the Android domain. Pierazzi et al. (2020) proposed a 
problem-space adversarial attack to generate real-world AEs by apply-

ing functionality-preserving transformations to the input malware apps. 
Chen et al. (2019) added adversarial perturbations found by a substi-

tute ML model to Android malware apps. Cara et al. (2020) presented 
a practical evasion attack by injecting system API calls determined 
via mimicry attack on APKs. Li et al. (2023) proposed a problem-

space attack called BagAmmo, targeting function call graph (FCG) based 
malware detection. The main shortcoming of these studies is that the 
authors assume the adversary to have perfect knowledge (Pierazzi et 
al., 2020) or limited knowledge (Cara et al., 2020; Chen et al., 2019) 
about the target classifiers (e.g., knowing the feature space or access-

ing the training set), while in real scenarios (e.g., bypassing antivirus 
engines), an adversary often has zero knowledge about the target mal-

ware detectors. For instance, BagAmmo (Li et al., 2023) assumes that 
the target malware detector is based on FCG, which implies that it has 
some knowledge about the target model. Note that this assumption may 
not be applicable in all real-world scenarios, as different malware de-

tectors may employ diverse feature sets.

On the other hand, despite the practicality of Pierazzi et al. (2020)

in attacking white-box malware classifiers, the side-effect features that 
appear from undesired payloads injected into malware samples may 
manipulate the feature representations of apps differently from what 
the attacker expects (Cara et al., 2020). Furthermore, such attacks may 
cause the adversarial malware to grow infinitely in size as they do not 
consider the size constraint of the adversarial manipulations. The at-

tacks presented in Chen et al. (2019); Li et al. (2023) are tailored to 
the target malware classifiers (i.e., DREBIN (Arp et al., 2014), and FCG-

based detectors such as MaMaDroid (Onwuzurike et al., 2019)), which 
means the authors did not succeed in presenting a generalized evasion 
technique. Moreover, the attack in Cara et al. (2020) has some limi-

tations, such as injecting incompatible APIs into Android apps or using 
incorrect parameters for API calls, which can crash adversarial malware 

apps.
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To address the aforementioned shortcomings, Yang et al. (2017) pro-

posed two attacks named the evolution and confusion attacks, designed 
to evade target classifiers in a black-box setting. However, their ap-

proach lacks details about critical issues (e.g., the feature extraction 
method) and is impractical because, as reported by the authors, their 
attacks can easily disrupt the functionality of APKs after a few ma-

nipulations. Demontis et al. (2017) employed an obfuscation tool to 
bypass Android malware classifiers, but their results indicate a low per-

formance for their method. He et al. (2023) introduced a query-based 
attack utilizing a perturbation selection tree and an adjustment policy. 
Nevertheless, the proposed attack is ineffective in hard-label settings, 
which are crucial for most real-world scenarios. Furthermore, in ad-

dition to the questionable plausibility of this attack, its success would 
be jeopardized by the disputable assumption that perturbations in the 
attack’s malware perturbation set impact the feature values of target 
malware detectors.

EvadeDroid addresses the limitations of existing attacks by thor-

oughly aiming to meet the practical demands of real-world scenarios, 
such as hard-label attacking in a fully ZK setting, query efficiency, and 
satisfaction of all problem-space constraints. The novelty of our work, 
compared to the aforementioned studies, lies in the following aspects: 
(i) EvadeDroid provides adversaries with a general tool to bypass vari-

ous Android malware detectors, as it is a problem-space evasion attack 
that operates in a ZK setting without any pre-assumptions about the 
features and types of features employed by the target malware de-

tectors (§5.2). (ii) Unlike other evasion attacks, EvadeDroid directly 
manipulates Android apps without relying on feature-space perturba-

tions. Its transformations not only are independent of the feature space 
but also adhere to problem-space constraints (§4.1). (iii) EvadeDroid is 
simple and easy to implement in real-world scenarios (§5.4) with proper 
transferability (§5.5). It is a query-efficient evasion attack that only re-

quires the hard labels of Android apps provided by target black-box 
malware detectors (e.g., cloud-based antivirus services) (§5.2).

3. Background

In this section, we present a concise overview of the fundamental 
backgrounds relevant to Android evasion attacks. This encompasses the 
structure of Android apps, ML-based Android malware detection, and 
the adversarial transformations used for generating Android adversarial 
malware.

3.1. Android application package (APK)

APK is a compressed file format with a .apk extension. APKs con-

tain various contents such as Resources and Assets. However, the most 
crucial contents, particularly for malware detectors, are the Manifest 
(AndroidManifest.xml) and Dalvik bytecode (classes.dex). The Manifest 
is an XML file that provides essential information about Android apps, 
including the package name, permissions, and definitions of Android 
components. It contains all the metadata required by the Android OS 
to install and run Android apps. On the other hand, Dalvik bytecode, 
also known as Dalvik Executable or DEX file, is an executable file that 
represents the behavior of Android apps.

Apktool (Apktool, 2010) is a popular reverse-engineering tool for 
the static analysis of Android apps. This reverse-engineering instrument 
can decompile and recompile Android apps. In the decompilation pro-

cess, the DEX files of Android apps are compiled into a human-readable 
code called smali. Besides the above tool, Soot (Vallée-Rai et al., 1999) 
and FlowDroid (Arzt et al., 2014) are two Java-based frameworks that 
are used for analyzing Android apps. Soot extracts different information 
from APKs (e.g., API calls) which are then used during static analysis. 
One of the advantages of Soot for malware detection is its ability to gen-

erate call graphs; however, Soot cannot generate accurate call graphs 
4

for all apps because of the complexity of the control flow of some APKs. 
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To address this shortcoming, FlowDroid, which is a Soot-based frame-

work, can create precise call graphs based on the app’s life cycle. It 
is worth noting that EvadeDroid uses Apktool, FlowDroid, and Soot in 
different components of its pipeline to generate adversarial examples.

3.2. ML-based Android malware detection

Leveraging ML for malware detection has garnered significant inter-

est among cybersecurity researchers in the past decade. ML has demon-

strated its potential as an effective solution in static malware analysis, 
enabling the identification of sophisticated and previously unknown 
malware through the generalization capabilities of ML algorithms (Li 
et al., 2021a). It is important to note that static analysis is a prominent 
approach for detecting malicious programs, where apps are classified 
based on their source code (i.e., static features) without execution. This 
approach offers fast analysis, allowing for the examination of an app’s 
code comprehensively, with minimal resource usage in terms of mem-

ory and CPU (Jusoh et al., 2021). In order to represent programs for 
ML algorithms, various types of features are commonly employed in 
the static analysis, including syntax features (e.g., requested permis-

sions and API calls (Arp et al., 2014; Demontis et al., 2017; Li and Li, 
2020)), opcode features (e.g., n-gram opcodes (Kang et al., 2016)), im-

age features (e.g., grayscale representations of bytecodes (Han et al., 
2015)), and semantic features (e.g., function call graphs (Onwuzurike 
et al., 2019)).

3.3. Adversarial transformations

In the programming domain, a safe transformation refers to a 
problem-space transformation that maintains the semantic equivalence 
of the original program while ensuring its executability. In the adversar-

ial malware domain, safe transformations, which guarantee preserved-

semantics constraint, can become adversarial transformations if they 
are also plausible and robust to processing (refer to Appendix A for ad-

ditional details regarding these constraints). Generally, in the context 
of Android malware detection, attackers have three types of adversarial 
transformations at their disposal to manipulate malicious apps (Pierazzi 
et al., 2020): (i) feature addition, (ii) feature removal, and (iii) feature 
modification. Feature addition involves adding new elements, such as 
API calls, to the programs, while feature removal entails removing 
contents like user permissions. Feature modification combines both ad-

dition and removal transformations in malware programs. Most studies 
have primarily focused on feature addition, as removing features from 
the source code is a complex operation that may cause malware apps 
to crash. Code transplantation (Pierazzi et al., 2020; Yang et al., 2017), 
system-predefined transformation (Cara et al., 2020), and dummy trans-

formation (Berger et al., 2020; Chen et al., 2019; Grosse et al., 2017; Li 
and Li, 2020; Li et al., 2021b) are three potential methods for adding 
features to manipulate Android apps. However, two main issues arise 
when considering feature additions:

(i) What specific content should be included. By deriving 
problem-space transformations from feature-space perturbations, the 
attacker aims to ensure that the additional contents (e.g., API calls, 
Activities, etc.) are guaranteed to appear in the feature vector of the 
manipulated malware app (Pierazzi et al., 2020). Therefore, attackers 
may either use dummy contents (e.g., functions, classes, etc.) (Chen et 
al., 2019) or system-predefined contents (e.g., Android system pack-

ages) (Cara et al., 2020) for this purpose. As the plausibility of these 
transformations is debatable due to the potential lack of complete in-

conspicuousness, malicious actors may also make use of content present 
in already-existing Android apps. The automated software transplantation

technique (Barr et al., 2015) can then be used to allow attackers to suc-

cessfully carry out safe transformations. They extract some slices of 
existing bytecodes from benign apps (i.e., donor) during the organ har-

vesting phase, and the collected payloads are injected into malware apps 

in the organ transplantation phase.
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(ii) Where contents should be injected. New contents must pre-

serve the semantics of malware samples; therefore, they should be in-

jected into areas that cannot be executed during runtime. For example, 
new contents can be added after RETURN instructions (Demontis et al., 
2017) or inside an IF statement that is always false (Pierazzi et al., 
2020). However, these injected contents are not robust to preprocess-

ing if static analysis can discard unreachable code. One creative idea 
to add unreachable code that is undetectable is the use of opaque pred-

icates (Moser et al., 2007). In this approach, new contents are injected 
inside an IF statement where its outcome can only be determined at 
runtime (Pierazzi et al., 2020).

4. Proposed attack

Here we first review the threat model and the problem definition of 
EvadeDroid. Subsequently, we will offer an illustration of the proposed 
attack.

4.1. Threat model

Adversarial Goal. The purpose of EvadeDroid is to manipulate An-

droid malware samples in order to deceive static ML-based Android 
malware detectors. The proposed attack is an untargeted attack (Carlini 
et al., 2019) designed to mislead binary classifiers utilized in Android 
malware detection, causing Android malware apps to be misclassified. 
In other words, EvadeDroid’s objective is to trick malware classifiers 
into classifying malware samples as benign.

Adversarial Knowledge. The proposed evasion attack has black-

box access to the target malware classifier. Therefore, EvadeDroid does 
not have knowledge of the training data 𝐷, the feature set 𝑋, or the 
classification model 𝑓 (i.e., the classification algorithm and its hyper-

parameters). The attacker can only obtain the classification results (e.g., 
hard labels or soft labels) by querying the target malware classifier.

Adversarial Capabilities. EvadeDroid is designed to deceive black-

box Android malware classifiers during their prediction phase. Our 
attack manipulates an Android malware app by applying a set of safe 
transformations, known as Android gadgets (i.e., slices of the benign 
apps’ bytecode), which are optimized through interactions with the 
black-box target classifier. To ensure adherence to problem-space con-

straints, EvadeDroid leverages a tool, developed by the authors (Pier-

azzi et al., 2020), for extracting and injecting gadgets. Furthermore, in 
order to avoid major disruptions to apps, the manipulation process of a 
malware app is conducted gradually, making it resemble benign apps. 
This is achieved by injecting a minimal number of gadgets extracted 
from benign apps into the malware app, and the process continues un-

til the malware app is misclassified or reaches the predefined evasion 
cost. In addition to the problem-space constraints discussed in previous 
research (Pierazzi et al., 2020), EvadeDroid must also adhere to two ad-

ditional constraints highlighting the significance of minimizing evasion 
costs:

• Number of queries. EvadeDroid is a decision-based adversarial 
attack that aims to generate AEs while minimizing the number of 
queries, thus reducing the associated costs (Rosenberg et al., 2020).

• Size of adversarial payloads. In order to generate executable 
and visually inconspicuous AEs, such as those with minimal file 
size (Demetrio et al., 2021), EvadeDroid aims to minimize the size 
of injected adversarial payloads.

It is worth mentioning, each gadget consists of an organ, which rep-

resents a slice of program functionality, an entry point to the organ, 
and a vein, which represents an execution path that leads to the entry 
point (Pierazzi et al., 2020). EvadeDroid extracts gadgets from benign 
apps by identifying entry points, which are typically API calls, through 
string analysis. The proposed attack assumes that the benign apps used 
5

for gadget extraction are not obfuscated, particularly in terms of their 
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API calls. This is because EvadeDroid relies on string analysis to identify 
entry points, which limits its ability to extract gadgets from obfuscated 
apps. The gadget injection is considered successful when both the clas-

sification loss value of the manipulated app increases and the injected 
adversarial payload conforms to the predefined size of the adversarial 
payload. Additionally, the injected gadgets are placed within the block 
of an obfuscated condition statement that is always evaluated as False

during runtime and cannot be resolved during design time.

Defender’s Capabilities. In this study, we assume that the target 
ML models do not employ adaptive defenses that are aware of the 
operations performed by EvadeDroid due to disclosing detectors’ vul-

nerability to EvadeDroid. Specifically, these target models are unable 
to enhance their resilience by incorporating AEs generated by Evade-

Droid during adversarial training. Furthermore, they lack the capability 
to detect and block queries from EvadeDroid if they become suspicious 
of its origin. Importantly, our analysis suggests that EvadeDroid can 
still be effective even if we relax the second assumption regarding the 
defender’s capabilities. This is supported by empirical evidence demon-

strating that our attack often requires only a minimal number of queries 
to generate AEs.

4.2. Problem definition

Suppose 𝜙 ∶ 𝑍 → 𝑋 ⊂ ℝ𝑛 is a feature mapping that encodes an in-

put object 𝑧 ∈𝑍 to a feature vector 𝑥 ∈𝑋 with dimension 𝑛. We denote 
this as 𝜙(𝑍) =𝑋. Here, 𝑍 represents the input space of Android appli-

cations, and 𝑋 represents the feature space of the app’s feature vectors. 
Furthermore, let 𝑓 ∶ 𝑋 → ℝ2 and 𝑔 ∶ 𝑋 × 𝑌 → ℝ denote a malware 
classifier and its discriminant function, respectively. The function 𝑓 as-

signs an Android app 𝑧 ∈ 𝑍 to a class 𝑓 (𝜙(𝑧)) = argmax𝑦=0,1 𝑔𝑦(𝜙(𝑧)), 
where 𝑦 = 1 indicates that 𝑧 is a malware sample and vice versa. The 
confidence score (soft label) for classifying 𝑧 into class 𝑦 is denoted 
as 𝑔𝑦(𝜙(𝑧)). Let 𝑇 ∶𝑍

𝛿⊆Δ
⟶𝑍 be a transformation function, denoted as 

𝑇𝛿⊆Δ(𝑧) = 𝑧′ or simply 𝑇𝛿(𝑧) = 𝑧′, which transforms 𝑧 ∈ 𝑍 to 𝑧′ ∈ 𝑍

by applying a sequence of transformations 𝛿 ⊆ Δ such that 𝑧 and 𝑧′
have the same functionality. Here, Δ = 𝛿1, 𝛿2, ..., 𝛿𝑛 represents an action 
set consisting of safe manipulations (transformations). Each 𝛿𝑖 ∈ Δ can 
independently preserve the functionality of a malware sample when ap-

plied.

In this study, the objective of the proposed evasion attack is to gen-

erate an adversarial example 𝑧∗ ∈𝑍 for a given malware app 𝑧 ∈𝑍 by 
applying a minimal sequence of transformations 𝛿 ⊆Δ to the app, using 
at most 𝑄 queries, while ensuring that the amount of injected adversar-

ial payloads is equal to or lower than 𝛼. This can be formulated as the 
following optimization problem:

min
𝛿⊆Δ

|𝛿|

s.t. 𝑓 (𝜙(𝑇𝛿(𝑧))) ≠ 𝑓 (𝜙(𝑧))

𝑞 ≤𝑄

𝑐(𝑇𝛿(𝑧), 𝑧) ≤ 𝛼

(1)

where |𝛿| denotes the cardinality of 𝛿. Additionally, 𝑄 and 𝛼 represent 
the evasion cost constraints of EvadeDroid, indicating the maximum 
query budget and the maximum size of adversarial payloads, respec-

tively. The size of adversarial payloads refers to the relative increase in 
the size of a malware sample after applying 𝛿, and it is measured using 
the following payload-size cost function:

𝑐(𝑇𝛿(𝑧), 𝑧) =
[𝑇𝛿(𝑧)] − [𝑧]

[𝑧]
× 100 (2)

where [.] represents the size of an APK. Equation (1) can be translated 
into the following optimization problem to find an optimal subset of 

transformations in the action set:
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argmax
𝛿⊆Δ

𝑔𝑦=0(𝜙(𝑇𝛿(𝑧)))

s.t. 𝑞 ≤𝑄

𝑐(𝑇𝛿(𝑧), 𝑧) ≤ 𝛼

(3)

Equation (3) outlines our objective to identify an optimal subset 
of problem-space transformations 𝛿 within the action set Δ that leads 
to misclassification. Specifically, the optimization aims to enhance the 
confidence score of classifiers in classifying 𝜙(𝑇𝛿(𝑧)), the feature repre-

sentation of 𝑧 modified by applying 𝛿, towards the benign class indi-

cated by 0. Note that the optimization solver is tasked with identifying 
the optimal 𝛿 with a maximum of 𝑄 queries, given that the adversarial 
payloads do not alter the size of 𝑧 beyond 𝛼.

4.3. Methodology

The primary goal of EvadeDroid is to transform a malware app into 
an adversarial app in such a way that it retains its malicious behavior 
but is no longer classified as malware by ML-based malware detectors. 
This is achieved through an iterative and incremental algorithm em-

ployed in the proposed attack, which aims to disguise malware APKs 
as benign ones. The attack algorithm generates real-world AEs from 
malware apps using problem-space transformations that satisfy problem-

space constraints. These transformations are extracted from benign apps 
in the wild, which are similar to malware apps using an n-gram-based 
similarity. In this approach, a random search algorithm is used to op-

timize the manipulations of apps. Each malware app undergoes incre-

mental manipulation during the optimization process, where a sequence 
of transformations is applied in different iterations. Before delving into 
the details of the methodology, we offer a brief overview of n-grams 
and random search.

n-Grams are contiguous overlapping sub-strings of items (e.g., let-

ters or opcodes) with a length of 𝑛 from the given samples (e.g., texts 
or programs). This technique captures the frequencies or existence of a 
unique sequence of items with a length of 𝑛 in a given sample. In the 
area of malware detection, several studies have used n-grams to extract 
features from malware samples (Fuyong and Tiezhu, 2017; Jain and 
Meena, 2011; Moskovitch et al., 2008; Santos et al., 2013; Shabtai et 
al., 2012). These features can be either byte sequences extracted from 
binary content or opcodes extracted from source codes. n-Grams opcode 
analysis is one of the static analysis approaches for detecting Android 
malware that has been investigated in various related works (Canfora 
et al., 2015; Islam et al., 2020; Jerome et al., 2014; Mas’ud et al., 2016; 
Varsha et al., 2017). To conduct such an analysis, the DEX file of an APK 
is disassembled into smali files. Each smali file corresponds to a specific 
class in the source code of the APK that contains variables, functions, 
etc. n-Grams are extracted from the opcode sequences that appear in 
different functions of the smali files.

Random Search (RS) (Rastrigin, 1963) is a simple yet highly ex-

ploratory search strategy that is used in some optimization problems to 
find an optimal solution. It relies entirely on randomness, which means 
RS does not require any assumptions about the details of the objective 
function or transfer knowledge (e.g., the last obtained solution) from 
one iteration to another. In the general RS algorithm, the sampling dis-

tribution 𝑆 and the initial candidate solution 𝑥(0) are defined based on 
the feasible solutions of the optimization problem. Then, in each itera-

tion 𝑡, a solution 𝑥(𝑡) is randomly generated from 𝑆 and evaluated using 
an objective function regarding 𝑥(𝑡−1). This process continues through 
different iterations until the best solution is found or the termination 
conditions are met. It’s noteworthy that RS can be a search strategy 
with high query efficiency in generating AEs (Croce et al., 2022).

The workflow of the attack pipeline is illustrated in Fig. 1, which 
consists of two phases: (i) preparation and (ii) manipulation.

4.3.1. Preparation

The primary objective of this step is to construct an action set com-
6

prising a collection of safe transformations that can directly manipu-
Computers & Security 139 (2024) 103676

Fig. 1. Overview of EvadeDroid’s pipeline.

late Android applications. Each transformation in the action set should 
be capable of altering APKs without causing crashes while preserving 
their functionality. In this study, program slicing (Weiser, 1984), im-

plemented in Pierazzi et al. (2020), is utilized to extract the gadgets 
that make up the transformations collected in the action set. During 
the preparation step, two important considerations are determining ap-

propriate donors and identifying suitable gadgets. Employing effective 
gadgets enables the modification of a set of features that can alter the 
classifier’s decision. EvadeDroid achieves this by executing the follow-

ing two sequential steps:

a) Donor selection. EvadeDroid selects donors from a pool of be-

nign apps in order to mimic malware instances as benign ones. While 
it is possible to extract gadgets from any available benign app, col-

lecting transformations from a large corpus of apps is computationally 
expensive due to the complexity of the program-slicing technique used 
for organ harvesting. Additionally, identifying potential donors resem-

bling malware apps can lead to obtaining transformations that facilitate 
disguising malware apps as benign. This is because malware apps that 
share similarities with benign ones may require fewer transformations 
to become AEs. In this study, EvadeDroid adopts a strategy of limiting 
the number of donors, i.e., choosing donors from the pool of benign 
apps that resemble malware apps. Our empirical results demonstrate 
that utilizing transformations from such benign apps accelerates the 
process of converting malware apps into benign ones, resulting in a re-

duced number of queries and transformations required for manipulation 
(refer to Appendix B for more details).

More specifically, by utilizing the extracted gadgets from these 
donors, EvadeDroid can generate effective adversarial perturbations by 
considering both feature and learning vulnerabilities (Maiorca et al., 
2020; Muñoz-González and Lupu, 2019). Fig. 2 provides a conceptual 
representation of EvadeDroid’s performance in evading the target clas-

sifier. As depicted in Fig. 2, incorporating segments of benign apps 
that resemble malware apps can either make malware apps look benign 

(𝑇𝛿(𝑧) = 𝑧∗1 where 𝛿 = {𝛿1, 𝛿2, 𝛿3}), or shift them towards the blind spots 
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Fig. 2. The functionality of EvadeDroid in generating real-world adversarial 
malware apps. The dark red and dark green samples are, respectively, the in-

accessible malware and benign samples that have been used for training the 
malware classifier. Light red and light green samples represent, respectively, 
accessible malware and benign samples in the wild. The blue and purple sam-

ples are manipulated malware apps and AEs, respectively.

of the target classifier (e.g., 𝑇𝛿(𝑧) = 𝑧∗2 where 𝛿 = {𝛿4, 𝛿5}). Note that 
some sequences of transformations may fail to generate successful AEs 
(e.g., {𝛿6, 𝛿7}). In this work, we employ an 𝑛-gram-based opcode tech-

nique to assess the similarities between malware and benign samples. 
Extracting 𝑛-gram opcode features enables automated feature extraction 
from raw bytecodes, allowing EvadeDroid to measure the similarity be-

tween real objects without requiring knowledge of the feature vector 
of Android apps in the feature space of the target black-box malware 
classifiers. We extract 𝑛-grams following typical approaches found in 
the literature (e.g., Kang et al., 2016; Ko et al., 2013), but with a fo-

cus on opcode types rather than the opcodes themselves. The 𝑛-gram 
opcode feature extraction utilized in this study involves the following 
main steps:

1. Disassemble Android application’s DEX files into smali files using 
Apktool.

2. Discard operands and extract 𝑛-grams from the types of all opcode 
sequences in each smali file belonging to the app. For example, 
consider a sequence of opcodes in a smali file: I: if-eq M: move G: 
goto I: if-ne M: move-exception G: goto/16 M: move-result. In this case, 
we have 7 opcodes with 3 types (i.e., 𝐼, 𝑀, 𝐺). Note IM, MG, GI, 
GM are all unique 2-grams that appeared in the given sequence.

3. Map the extracted feature sets to a feature space 𝐻 by aggregating 
all observable 𝑛-grams from all APKs.

4. Create a feature vector ℎ ∈𝐻 for each app, where each element of 
ℎ indicates the presence or absence of a specific 𝑛-gram in the app.

Suppose 𝑀 and 𝐵 represent the sets of malware and benign apps, 
respectively, available to EvadeDroid. The similarity between each pair 
of a malware app 𝑚𝑖 ∈ 𝑀 and a benign app 𝑏𝑗 ∈ 𝐵 is determined by 
measuring the containment (Kang et al., 2016; Ko et al., 2013) of 𝑏𝑗 in 
𝑚𝑖 using the following approach:

𝜎(𝑚𝑖, 𝑏𝑗 ) =
|𝑣(𝑚𝑖) ∩ 𝑣(𝑏𝑗 )|

|𝑣(𝑏𝑗 )|
(4)

where 𝑣(𝑚𝑖) and 𝑣(𝑏𝑗 ) represent the sets of features with values of 1
in ℎ𝑚𝑖

and ℎ𝑏𝑗
, respectively, and |.| denotes the number of features. 

Specifically, |𝑣(𝑚𝑖) ∩ 𝑣(𝑏𝑗 )| denotes the number of common features be-
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tween 𝑚𝑖 and 𝑏𝑗 . It is worth emphasizing that most Android malware 
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apps are created using repackaging techniques, where attackers disguise 
malicious payloads in legitimate apps (Chen et al., 2015). Therefore, 
we consider the containment of benign samples in malware samples to 
determine the similarities between each pair of malware and benign 
samples. To identify suitable donors, we calculate a weight for each 
benign app 𝑏𝑖 ∈𝐵 according to equation (4):

𝑤𝑏𝑗
=

∑
∀𝑚𝑖∈𝑀 𝜎(𝑚𝑖, 𝑏𝑗 )

|𝑀| (5)

where |𝑀| represents the number of malware apps. We then sort the 
benign apps in descending order based on their corresponding weights. 
Finally, we select the top-𝑘 benign apps as suitable donors for gadget 
extraction. Note that 𝑤𝑏𝑗

reflects how closely 𝑏𝑗 aligns with the distri-

bution of malware apps, offering a measure of its resemblance to the 
characteristics of malware.

b) Gadget extraction. We collect gadgets based on the desired func-

tionality we aim to extract from donors. EvadeDroid intends to simulate 
malware samples to benign ones from the perspective of static analysis; 
therefore, the payloads responsible for the key semantics of donors are 
proper candidates for extraction. To access the semantics of Android ap-

plications, EvadeDroid extracts the payloads containing API calls (i.e., 
the code snippet encompassing an API call and all its associations) since 
API calls represent the main semantics of apps (Aafer et al., 2013; Sami 
et al., 2010). An API call is an appropriate point in the bytecode of an 
APK because the snippets encompassing the API calls are related to one 
of the app semantics. In sum, gadget extraction from donors consists of 
the following main steps:

1. Disassemble DEX files of donors into smali files by using Apktool.

2. Perform string analysis on each app to identify all API calls in its 
smali files.

3. Extract the gadgets associated with the collected API calls from 
each app.

Ultimately, the action set Δ is formed by taking the union of the 
extracted gadgets.

4.3.2. Manipulation

We employ Random Search (RS) as a simple black-box optimization 
method to solve equation (3). Specifically, for each malware sample 𝑧, 
EvadeDroid utilizes RS to find an optimal subset of transformations 𝛿
in order to generate an adversarial example 𝑧∗. RS offers a significant 
advantage in terms of query reduction compared to other heuristic opti-

mization algorithms, such as Genetic Algorithms (GAs). This is because 
RS only requires one query in each iteration to evaluate the current 
solution. Algorithm 1 outlines the key steps of the manipulation com-

ponent in the proposed problem-space evasion attack. As depicted in 
Algorithm 1, the RS method randomly selects a transformation 𝜆 from 
the action set Δ to generate 𝑧∗ for 𝑧. Subsequently, based on the adver-

sarial payload size 𝛼, the algorithm applies 𝜆 to 𝑧 only if it can improve 
the objective function 𝐿 defined in equation (3), which corresponds to 
the discriminant function of the target classifier for 𝑦 = 0.

Hard-label Setting. In Algorithm 1, we assume that our attack has 
access to the soft label of the target classifier. This means that Evade-

Droid can obtain the confidence score provided by the black-box classi-

fication model when making queries. However, in real-world scenarios, 
such as antivirus systems, the target classifier may only provide hard 
labels (i.e., classification labels) for Android apps. In this study, we 
consider two approaches, namely optimal and non-optimal hard-label 
attacks, to address this challenge. In the optimal hard-label attack, the 
adversary aims to generate AEs by applying minimal transformations. 
To achieve this, EvadeDroid modifies the objective function of the pro-

posed RS algorithm (i.e., equation (3)) by maximizing the following 

objective function, while considering the evasion cost:
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Algorithm 1: Generating a real-world adversarial example.

Input: 𝑧, the original malware sample; Δ, the action set; 𝐿, the objective 
function; 𝜙, the feature mapping function; 𝑐, the payload-size cost 
function; 𝑄, the query budget; 𝛼, the allowed adversarial payload size.

Output: 𝑧∗ , an adversarial example; 𝛿, an optimal transformations.

1 𝑞 ← 1 ;

2 𝑧∗ ← 𝑧;

3 𝐿𝑏𝑒𝑠𝑡 ←-∞;

4 𝛿 ← Ø;

5 while 𝑞 ≤𝑄 and 𝑧∗ is classified as a malware do

6 𝜆 ← Select a transformation randomly from Δ \𝛿;

7 𝑧′ ← 𝑇𝜆(𝑧∗);
8 𝑙 =𝐿(𝜙(𝑧′));
9 if 𝑐(𝑧, 𝑧′) ≤ 𝛼 then

10 if 𝐿𝑏𝑒𝑠𝑡 ≤ 𝑙 then

11 𝐿𝑏𝑒𝑠𝑡 ← 𝑙;

12 𝑧∗ ← 𝑧′ ;

13 𝛿 ← 𝛿 ∪ 𝜆

14 end

15 end

16 end

17 return 𝑧∗ , 𝛿

argmax
𝛿⊆Δ

𝑠(𝑇𝛿(𝑧))

s.t. 𝑞 ≤𝑄

𝑐(𝑇𝛿(𝑧), 𝑧) ≤ 𝛼

(6)

where 𝑄 (i.e., number of queries) and 𝛼 (i.e., size of adversarial pay-

loads) represent evasion cost budgets, and 𝑐 denotes the payload-size 
cost function (equation (2)). Moreover, 𝑠 is the following similarity 
function:

𝑠(𝑎) = max
∀𝑏∈𝐵

|𝑣(𝑎) ∩ 𝑣(𝑏)|
‖ℎ𝑎 − ℎ𝑏‖1

(7)

where 𝐵 represents all available benign apps in the wild. 𝑣(𝑎) and 𝑣(𝑏)
represent the sets of features with values of 1 in ℎ𝑎 (i.e., the feature 
vector of 𝑎) and ℎ𝑏 (i.e., the feature vector of 𝑏), respectively, and 
|.| denotes the number of features. Furthermore, ‖ℎ𝑎 − ℎ𝑏‖1 denotes 
the sum of the absolute differences (i.e., 𝑙1-norm) between the opcode-

based feature vectors of 𝑎 and 𝑏. The 𝑙1-norm enhances the accuracy of 
our similarity measurement, particularly in scenarios where the num-

ber of common features between various pairs of malware samples and 
benign samples is the same, aiding EvadeDroid in identifying the max-

imum similarity. Note that equation (7) aims to measure the similarity 
between two apps based on not only a large set of common features but 
also a small distance. The underlying idea behind the introduced objec-

tive function is rooted in our primary approach to misleading malware 
classifiers. In other words, a transformation can be applied to a mal-

ware app if it maintains or increases the maximum similarity between 
the malware app and available benign apps.

On the other hand, in the non-optimal hard-label attack, EvadeDroid 
applies random transformations to malware until it creates an AEs or 
reaches the predefined query budget. Specifically, in this setting, Evade-

Droid randomly selects and applies a transformation from the action set 
to the malware app in each query. The target classifier is then queried 
to determine the label of the modified app. If the label indicates that 
the app is still classified as malware, EvadeDroid repeats this process.

It is important to highlight that Fig. 3 depicts the procedure of ma-

nipulating an Android malware app through a problem-space transfor-

mation, specifically injecting an extracted gadget into a malware app. 
For more detailed information on the implementation of EvadeDroid, 
we refer the reader to Appendix C.

5. Simulation results

In this section, we empirically assess the performance of EvadeDroid 
in deceiving various academic and commercial malware classifiers. Our 
8

experiments aim to answer the following research questions:
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RQ1. How does the evasion cost affect the performance of EvadeDroid? 
(§5.2)

RQ2. Is EvadeDroid a versatile attack that can evade different Android 
malware detectors without relying on any specific assumptions? (§5.2)

RQ3. How does the performance of EvadeDroid compare to other simi-

lar attacks? (§5.3)

RQ4. Is EvadeDroid applicable in real-world scenarios? (§5.4)

RQ5. How does EvadeDroid demonstrate its performance despite the 
restriction of not being able to query the target detectors? (§5.5)

RQ6. How does the proposed RS-based manipulation strategy affect the 
performance of EvadeDroid? (§5.6)

All experiments have been run on a Debian Linux workstation with 
an Intel (R) Core (TM) i7-4770 K, CPU 3.50 GHz, and 32 GB RAM.

5.1. Experimental setup

Here, we provide an overview of the target detectors, datasets, and 
evaluation metrics we consider in our experiments.

5.1.1. Target detectors

To ensure that our conclusions are not limited to a specific type 
of malware detection, we evaluate EvadeDroid against various mal-

ware detectors to demonstrate the effectiveness of the proposed at-

tack. In particular, our evaluation focuses on assessing EvadeDroid’s 
performance against well-known Android malware detection models, 
namely DREBIN (Arp et al., 2014), Sec-SVM (Demontis et al., 2017), 
ADE-MA (Li and Li, 2020), MaMaDroid (Onwuzurike et al., 2019), and 
Opcode-SVM (Jerome et al., 2014). These models have been extensively 
studied in the context of detecting problem-space adversarial attacks in 
the Android domain (Chen et al., 2019; Grosse et al., 2017; Li et al., 
2021b; Pierazzi et al., 2020; Zhang et al., 2021). For more details about 
these detectors, please refer to Appendix D.

5.1.2. Dataset

We evaluate the performance of EvadeDroid using the dataset pro-

vided in Pierazzi et al. (2020). This dataset consists of ≈ 170𝐾 samples, 
each represented using the DREBIN (Arp et al., 2014) feature set. The 
samples are feature representations of Android apps collected from An-

droZoo (Allix et al., 2016) and labeled by Pierazzi et al. (2020) using a 
threshold-based labeling approach. These collected apps were published 
between January 2017 and December 2018. According to the label-

ing criteria in Pierazzi et al. (2020), an APK is considered malicious or 
clean if it has been detected by any 4+ or 0 VirusTotal (VT) (VirusTotal, 
2004) engines, respectively. It is important to note that the threshold-

based labeling approach does not rely on specific engines but considers 
the number of engines involved (Salem, 2021). Therefore, the engines 
used for labeling may vary from sample to sample.

Table 2 presents the specifications of datasets utilized in our re-

search where their samples were randomly chosen from the collected 
data provided in Pierazzi et al. (2020). It’s worth mentioning that there 
is no overlap between the inaccessible and accessible datasets. Evade-

Droid exclusively makes use of the accessible dataset, which comprises 
2𝐾 benign samples for donor selection and 1𝐾 malware samples for 
the creation of AEs. To fulfill the requirement of direct utilization of 
apps in our problem-space attack, we collect 3𝐾 apps corresponding 
to EvadeDroid’s accessible samples from AndroZoo, based on the apps’ 
specifications provided with the dataset (Pierazzi et al., 2020). In this 
study, we employ two training sets with different scales (i.e., 12𝐾 and 
100𝐾) for training classifiers. The proportion between benign and mal-

ware samples in the training sets is chosen to avoid spatial dataset 
bias (Pendlebury et al., 2019). Fig. 4 illustrates the temporal distribu-

tion of the smaller training set, demonstrating the absence of temporal 
bias as these apps were published across various months. The larger 
training set follows a similar distribution. In §5.2, §5.3, and §5.5, a 
training set with a reasonable size (i.e., 12𝐾) is used due to the time-
consuming preprocessing required by the apps in the MaMaDroid and 
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Fig. 3. Applying a problem-space transformation (i.e., gadget) into a malware app involves injecting the gadget extracted from an API call entry point (e.g., 
SmsManager) in a donor into an obfuscated false condition statement within the malware app. The code snippets are displayed in Java representation to facilitate 
better understanding.

Table 2

Datasets used in our experiments.

Dataset No. of

Benign samples

No. of

Malware Samples

Relevant

Experiment

Inaccessible Dataset 
(Training Samples)

10 K 2 K §5.2, §5.3 ,§5.5

90 K 10 K §5.5

Accessible Dataset 
(EvadeDroid’s samples)

2 K 1 K All
Opcode-SVM, especially the former. Note that MaMaDroid and Opcode-

SVM employ their own distinct feature representations, which differ 
from the DREBIN feature representation used in Pierazzi et al. (2020). 
Therefore, to provide the training set for these detectors, we have to 
directly collect all considered apps in the training set from AndroZoo 
based on the specifications provided by Pierazzi et al. (2020). Subse-

quently, the apps are embedded in the MaMaDroid and Opcode-SVM 
feature spaces using a feature extraction method. In the second evalu-

ation conducted in §5.5, we employ a larger training set (incl., 100𝐾
samples) to train DREBIN and Sec-SVM in order to illustrate the im-

pact of a larger training set on EvadeDroid. It is important to highlight 
that our empirical evaluation shows that training classifiers with more 
samples does not significantly alter the performance of EvadeDroid.

5.1.3. Evaluation metrics

We utilize the True Positive Rate (TPR) and False Positive Rate (FPR) 
as performance metrics for evaluating the effectiveness of malware clas-

sifiers in detecting Android malware. In Fig. 5, we present the Receiver 
Operating Characteristic (ROC) curves of DREBIN, Sec-SVM, ADE-MA, 
MaMaDroid, and Opcode-SVM, the Android malware detectors used in 
this study, on the 12𝐾 training samples in the absence of our proposed 
attack. Note that the ROC curves were generated using 10-fold cross-

validation. In addition to these metrics, we introduce the Evasion Rate 
9

(ER) and Evasion Time (ET) as EvadeDroid’s performance assessment 
Fig. 4. The temporal distribution of training samples. The dataset (Pierazzi et 
al., 2020) lacked clarity regarding the release dates of the ≈ 1.5𝐾 samples in 
our training set.

metrics in deceiving malware classifiers. ER is calculated as the ratio 
of correctly detected malware samples that are able to evade the target 
classifiers after manipulation to the total number of correctly classified 
malware samples. ET represents the average time, expressed in seconds, 
required by EvadeDroid to generate an AE, encompassing both opti-

mization and query times. Note that the optimization time primarily 

consists of the execution times of random search, injecting problem-
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Fig. 5. ROC curves of DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-

SVM in the absence of EvadeDroid. The regions with translucent colors that 
encompass the lines are standard deviations.

space transformations, and performing feature extraction to represent 
manipulated apps within the feature space. Further details of our ex-

perimental settings can be found in Appendix E.

5.2. Evasion costs and generalizability

This section first examines the influence of the allowed adversarial 
payload size 𝛼 and the query budget 𝑄 on the performance of Evade-

Droid to answer RQ1. Specifically, the evasion rates of EvadeDroid in 
fooling various malware detectors under different adversarial payload 
sizes and query numbers are depicted in Fig. 6. Fig. 6a demonstrates 
that the evasion rate is influenced by the size of the adversarial pay-

load, as increasing the size allows EvadeDroid to modify more malware 
applications. However, we observed that for 𝛼 ≥ 30%, the impact on the 
evasion rate becomes less significant, as most sequences of viable trans-

formations almost reach a plateau at 𝛼 = 30%. Furthermore, no further 
improvement in evasion rates is observed beyond 𝛼 = 50%. In addition 
to the adversarial payload size, the query budget is another constraint 
that affects the evasion rate of EvadeDroid. Fig. 6b presents a compar-

ison of the effect of different query numbers on the evasion rates of 
EvadeDroid against various malware detectors, with an allowed adver-

sarial payload size of 𝛼 = 50%. As can be seen in Fig. 6b, EvadeDroid 
requires a larger number of queries to generate successful AEs for by-

passing Sec-SVM as compared to other detectors. This can be attributed 
to the fact that Sec-SVM, being a sparse classification model, relies on a 
greater number of features for malware classification compared to other 
classifiers. Consequently, EvadeDroid needs to apply more transforma-

tions to malware apps in order to deceive this more resilient variant 
of DREBIN. Additionally, Fig. 6b demonstrates that a query budget of 
𝑄 = 20 is nearly sufficient for EvadeDroid to achieve maximum evasion 
rate when attempting to bypass a malware detector. It is important to 
highlight that for the remaining experiments of the paper, we have cho-

sen to use 𝑄 = 20 and 𝛼 = 50% as they yield the optimal performance 
for EvadeDroid.

To answer RQ2, we conduct an experiment involving various mal-

ware detectors and different attack settings. Specifically, we include 
DREBIN, SecSVM, ADE-MA, MaMaDroid, and Opcode-SVM to cover dif-

ferent ML algorithms (i.e., linear vs. non-linear malware classifiers, and 
gradient-based vs. non-gradient-based malware classifiers) and diverse 
features (i.e., discrete vs. continuous features, and syntax vs. opcode 
vs. semantic features). Additionally, we explore different attack set-

tings (soft label vs. hard label) to demonstrate EvadeDroid’s adaptability 
in various scenarios. The performance of the proposed attacks under 
different settings and malware detectors is presented in Table 3. As 
shown in this table, EvadeDroid demonstrates effective evasion capa-

bilities against various malware detectors, including DREBIN, Sec-SVM, 
and ADE-MA with syntax binary features, as well as MaMaDroid with 
semantic continuous features and Opcode-SVM with opcode binary fea-
10

tures. The evaluation also reveals that EvadeDroid performs similarly 
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Table 3

Effectiveness of EvadeDroid in misleading different malware detectors when 
𝑄 = 20 and 𝛼 = 50%. NoQ, NoT, and AS denote Avg. No. of Queries, Avg. 
No. of Transformations, and Avg. Adversarial Payload Size, respectively.

Type of Threat Target Model ER (%) ET (s) NoQ NoT AS (%)

Soft Label

DREBIN 88.9 210.3 3 2 15.5

Sec-SVM 85.1 495.4 9 4 16.4

ADE-MA 86.0 126.2 2 1 16.3

MaMaDroid 94.8 131.4 1 1 15.9

Opcode-SVM 79.6 114.1 3 2 18.3

Optimal 
Hard Label

DREBIN 84.5 240.6 4 2 16.2

Sec-SVM 82.6 613.1 9 6 16.5

ADE-MA 84.4 121.2 2 1 16.3

MaMaDroid 94.8 133.7 1 1 15.9

Opcode-SVM 74.1 101.2 2 1 18.2

Non-optimal 
Hard Label

DREBIN 79.7 357.2 4 4 16.9

Sec-SVM 78.2 782.8 9 9 17.3

ADE-MA 82.7 157.3 2 2 16.4

MaMaDroid 94.8 132.6 1 1 15.9

Opcode-SVM 66.6 76.2 1 1 18.3

well in the optimal hard-label setting compared to the soft-label setting. 
It is important to note that the comparison between soft-label attacking 
and non-optimal hard-label attacking highlights the influence of opti-

mizing manipulations on the performance of EvadeDroid against differ-

ent detectors. While only applying transformations to malware apps is 
sufficient for MaMaDroid, optimizing manipulations can enhance Evad-

eDroid’s effectiveness against other detectors, especially Opcode-SVM. 
For instance, our findings shown in Table 3 demonstrate a 13% im-

provement in the ER of EvadeDroid when targeting Opcode-SVM in the 
soft-label setting, compared to the non-optimal hard-label setting. Fur-

thermore, when operating in the soft-label setting, EvadeDroid requires 
notably fewer transformations to bypass DREBIN and Sec-SVM, as com-

pared to the non-optimal hard-label setting (e.g., 4 vs. 9 for Sec-SVM), 
which confirms the effectiveness of EvadeDroid in solving the optimiza-

tion problem defined in equation (1). Table 3 further illustrates that our 
optimization leads to a substantial reduction in ET compared to the non-

optimal hard-label setting. Specifically, for DREBIN and Sec-SVM, this 
leads to a time reduction of ≈ 41% and ≈ 37%, respectively. This sig-

nificant enhancement can be attributed to the reduction in the number 
of transformations, achieved through the utilization of our proposed 
optimization technique. Note that ET brings attention to the varying 
time overheads associated with the feature extraction process used to 
compute objective values when attacking different target detectors. For 
example, while NoQ and NoT are the same in attacking MaMaDroid 
and Opcode-SVM in the non-optimal hard-label setting, the ET for Ma-

MaDroid is significantly higher than that for Opcode-SVM. The observed 
distinction is rooted in the considerable time consumption of the feature 
extraction process in MaMaDroid.

In summary, the results demonstrate that the proposed adversarial 
attack is a versatile black-box attack that does not make assumptions 
about target detectors, including the ML algorithms or the features used 
for malware detection. Furthermore, it can operate effectively in various 
attack settings.

5.3. EvadeDroid vs. other attacks

To answer RQ3, we conduct an empirical analysis to assess how 
EvadeDroid performs in comparison to other similar attacks. To es-

tablish a comprehensive evaluation of EvadeDroid, we consider four 
baseline attacks: PiAttack (Pierazzi et al., 2020), Sparse-RS (Croce et 
al., 2022), ShadowDroid (Zhang et al., 2021), and GenDroid (Xu et 
al., 2023) operating in white-box, gray-box, semi-black-box, and black-

box settings, respectively. These attacks serve as suitable benchmarks, 
allowing us to assess the performance of EvadeDroid from different 

perspectives, such as evasion rate and the number of queries. Similar 
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Fig. 6. ERs of EvadeDroid operating in the soft-label setting in deceiving different Android malware detectors in terms of (a) different adversarial payload sizes and 
(b) different queries.
Table 4

ERs of EvadeDroid, PiAttack, Sparse-RS, Shadow-

Droid, and GenDroid in misleading DREBIN, Sec-

SVM, and ADE-MA. NoQ denotes Avg. No. of 
Queries.

Target Model Evasion Attach ER (%) NoQ

DREBIN

EvadeDroid 88.9 3

PiAttack 99.6 N/A

Sparse-RS 18.3 195

ShadowDroid 95.3 31

GenDroid 95.5 93

Sec-SVM

EvadeDroid 85.1 9

PiAttack 94.3 N/A

Sparse-RS 0.4 38

ShadowDroid 8.6 64

GenDroid 14.5 336

ADE-MA

EvadeDroid 86.0 2

PiAttack 100 N/A

Sparse-RS 99.7 2

ShadowDroid 77.8 29

GenDroid 100 81

to EvadeDroid, Sparse-RS, ShadowDroid, and GenDroid generate AEs 
by querying the target detectors. Additionally, PiAttack is a problem-

space adversarial attack that employs a similar type of transformation 
to generate AEs. Although PiAttack is a white-box evasion attack, it es-

tablishes a benchmark for optimal evasion performance, facilitating the 
evaluation of the comparative effectiveness of other attacks with limited 
or zero knowledge about the targeted detectors. For further informa-

tion about these attacks, please refer to Appendix F. In this experiment, 
we chose DREBIN, Sec-SVM, and ADE-MA as the target detectors be-

cause they align with the threat models of PiAttack, Sparse-RS, and 
ShadowDroid. Table 4 shows the ERs of different adversarial attacks 
in deceiving various malware detectors. As can be seen in Table 4, al-

though EvadeDroid has zero knowledge about DREBIN, Sec-SVM, and 
ADE-MA, its evasion rates for bypassing these detectors are comparable 
to PiAttack, where the adversary has full knowledge of the target detec-

tors. Moreover, our empirical analysis shows that EvadeDroid requires 
adding more features to evade DREBIN, Sec-SVM, and ADE-MA. In con-

crete, on average, EvadeDroid makes 54–90 new features appear in the 
feature representations of the malware apps when it applies transforma-

tions to the apps for evading DREBIN, Sec-SVM, and ADE-MA, while the 
transformations used by PiAttack on average, trigger 11–68 features. Pi-

Attack’s ability to add a smaller number of features is attributed to its 
complete knowledge of the details of DREBIN, Sec-SVM, and ADE-MA. 
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However, EvadeDroid lacks this specific information.
Furthermore, as shown in Table 4, the evasion rate of Sparse-RS for 
DREBIN and Sec-SVM demonstrates that random alterations in malware 
features do not necessarily result in the successful generation of AEs, 
even when adversaries have access to the target models’ training set. 
Although EvadeDroid operates solely in a black-box setting, this attack 
outperforms Sparse-RS by a considerable margin for both DREBIN and 
Sec-SVM, i.e., 70.6% and 84.7% improvement, respectively. Moreover, 
EvadeDroid considerably surpasses ShadowDroid in attacking Sec-SVM 
and ADE-ME. Especially, in contrast to EvadeDroid, ShadowDroid is 
unsuccessful in effectively evading Sec-SVM, which is a robust detec-

tor against AEs. Note that the superior performance of ShadowDroid 
compared to EvadeDroid in bypassing DREBIN is based on the assump-

tion that target detectors primarily rely on API calls and permissions. 
However, this assumption is not practical in real scenarios, as detectors 
may employ other features for malware detection. Table 4 further illus-

trates that GenDroid exhibits superior evasion rates compared to Evad-

eDroid when targeting DREBIN and ADE-MA; nevertheless, its efficacy 
is substantially nullified when facing Sec-SVM, a resilient malware de-

tector. Our empirical analysis also highlights the remarkable efficiency 
of EvadeDroid in terms of the number of queries compared to other 
query-based attacks. Specifically, on average, EvadeDroid requires only 
2–9 queries to bypass DREBIN, Sec-SVM, and ADE-MA, while Sparse-

RS, ShadowDroid, and GenDroid demand 2–195, 29–64, and 81–336 
queries, respectively.

In summary, the experimental results validate the practicality of 
EvadeDroid, which adopts a realistic threat model, in comparison to 
other attacks for generating AEs. Specifically, the threat models of Pi-

Attack and Sparse-RS are essentially proposed for the detectors that 
operate in the DREBIN feature space, but their threat models are not 
practical for targeting detectors like MaMaDroid. Furthermore, Shad-

owDroid’s effectiveness is limited to scenarios where malware detec-

tion is solely based on API calls and permissions. For instance, as 
demonstrated in Zhang et al. (2021), ShadowDroid is unable to deceive 
MaMaDroid or opcode-based detectors. In contrast, as shown in §5.2, 
EvadeDroid is capable of effectively fooling these types of detectors as 
its problem-space transformations are independent of feature space. Ad-

ditionally, although GenDroid operates in the ZK setting, it perhaps en-

counters challenges in evading robust malware detectors like Sec-SVM 
and might pose potential issues in real-world scenarios due to the sub-

stantial number of queries it requires compared to EvadeDroid. Finally, 
Sparse-RS, ShadowDroid, and GenDroid might not be deemed realistic 
approaches as their abilities to satisfy problem-space constraints, par-

ticularly robustness-to-preprocessing and plausibility constraints, are 

questionable.
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Table 5

Performance of EvadeDroid in the hard-label setting on five commer-

cial antivirus products. NoM denotes No. of Detected Malware by each 
engine among 100 malware apps.

Engine NoM
EvadeDroid

ER (%) Avg. Attack 
Time (s)

Avg. No. of 
Queries

Avg. Query 
Time

AV1 54 68.5 31.3 1 214.3

AV2 32 87.5 54.7 2 387.2

AV3 31 74.2 124.1 2 446.6

AV4 41 100 35.2 1 329.7

AV5 11 63.6 21.5 1 272.9

5.4. EvadeDroid in real-world scenarios

This experiment aims to investigate RQ4 to demonstrate the prac-

ticality of EvadeDroid in real-world scenarios. Although the ability of 
EvadeDroid in the hard-label setting indicates that this attack can trans-

fer to real life, we further consolidate this observation by measuring 
the impact of EvadeDroid on commercial antivirus products that are 
available on VT to confirm the practicality of our proposed attack in 
real scenarios. We chose five popular antivirus engines in the Android 
ecosystem based on the recent ratings of the endpoint protection plat-

forms reported by AV-Test (AV-TEST, 2004). They are the top AVs in 
AV-Test capable of detecting malware apps in EvadeDroid’s accessible 
dataset. Moreover, 100 malware apps belonging to different malware 
families have been randomly selected from the 1𝐾 malware apps avail-

able to EvadeDroid to evaluate the performance of this attack on the 
aforementioned five commercial detectors. To ensure the reliability of 
our experiment, it is crucial to confirm that the labels assigned to the 
malware apps used in this experiment have remained consistent. This 
is because the labels of collected apps are based on their correspond-

ing samples in our benchmark dataset (Pierazzi et al., 2020), while 
the labels assigned by antivirus engines to apps can potentially change 
over time. Therefore, we meticulously selected 100 apps that are still 
malware based on the threshold labeling criteria used in our primary 
dataset at the time of our experiment, i.e. on September 11, 2022, 
through querying VT. Furthermore, for each antivirus product, we gen-

erate AEs for the apps detected as malware by the antivirus. Table 5

presents the results of the experiment in which EvadeDroid attempts 
to deceive each AV in the optimal hard-label setting. In this experi-

ment, we have assumed 𝑄 = 10 and 𝛼 = 50%. As can be seen in 
Table 5, our proposed attack can effectively evade all antivirus prod-

ucts with a few queries. Here the effectiveness of EvadeDroid can be 
primarily attributed to the transformations rather than the optimiza-

tion technique. This is evident from the fact that in most cases, only 
one query is required to generate AEs. We further investigate the per-

formance of EvadeDroid against the overall effect of VT. Fig. 7 shows 
the average number of VT detections for all 100 malware apps after 
each attempt of EvadeDroid to change malware apps into AEs. As de-

picted in Fig. 7, EvadeDroid can effectively deceive VT engines with an 
average of 70.67%. It is worth noting that the findings in this experi-

ment validate the results observed in previous studies (e.g., Ceschin et 
al., 2019).

Responsible Disclosure. We conducted a responsible disclosure 
process to ensure the security community was informed of our research 
findings. As part of this process, we not only reached out to VT but also 
notified the antivirus engines that were affected by EvadeDroid by pro-

viding detailed information about our attack methodology and sharing 
some test cases.

5.5. Transferable adversarial examples

In general, when decision-based adversarial attacks, such as Evad-

eDroid, encounter difficulty in querying specific target detectors, they 
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can create transferable AEs using a surrogate classifier. Here we explore
Computers & Security 139 (2024) 103676

Fig. 7. Performance of EvadeDroid in evading VT engines against different 
query budgets.

Table 6

Transferability of AEs generated by Evade-

Droid.

Surrogate Model Target Model ER (%)

DREBIN

Sec-SVM 25.5

ADE-MA 88.7

MaMaDroid 63.0

Opcode-SVM 42.2

Sec-SVM

DREBIN 95.7

ADE-MA 98.5

MaMaDroid 95.4

Opcode-SVM 53.7

ADE-MA

DREBIN 49.3

Sec-SVM 8.7

MaMaDroid 67.5

Opcode-SVM 22.0

MaMaDroid

DREBIN 41.1

Sec-SVM 6.0

ADE-MA 88.9

Opcode-SVM 37.0

Opcode-SVM

DREBIN 32.8

Sec-SVM 10.9

ADE-MA 66.8

MaMaDroid 74.83

RQ5 by considering transferable AEs. To investigate the transferabil-

ity of EvadeDroid, we evaluate the evasion rates of AEs generated on a 
model (e.g., Sec-SVM), which works as a surrogate model, in misleading 
other target models (e.g., DREBIN). This is a stricter threat model that 
indicates the performance of EvadeDroid in cases where adversaries are 
not capable of querying the target detectors. Table 6 demonstrates that 
when EvadeDroid employs a stronger surrogate model (e.g., Sec-SVM), 
the AEs exhibit higher transferability. Note that the reported ERs in Ta-

ble 6 are the evasion rates of successful AEs that are also successfully 
transferred.

We further compare the transferability of EvadeDroid with PiAt-

tack (Pierazzi et al., 2020) as it is similar to ours in terms of trans-

formation type. This attack uses two kinds of primary features for 
misclassification, and side-effect features for satisfying problem-space 
constraints to generate realizable adversarial examples. However, Evad-

eDroid is not constrained by features as it operates in black-box settings. 
We specifically measure the transferability of the AEs in fooling Sec-

SVM when DREBIN is the surrogate model. We ensure that the original 
apps of the AEs are correctly detected by Sec-SVM. Both DREBIN and 
Sec-SVM are trained with 100𝐾 apps (incl., 90𝐾 benign apps and 10𝐾

malware apps) to see the effect of large ML models on EvadeDroid’s per-
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Table 7

RS-based vs. GA-based manipulation strategies in 
EvadeDroid. NoQ indicates Avg. No. of Queries and 
NoT denotes Avg. No. of Transformations.

Search Method ER (%) ET (s) NoQ NoT

RS 88.9 210.3 3 2

GA 65.1 630.7 22 5

formance. The experimental results show that the ERs of the PiAttack 
and EvadeDroid in circumventing DREBIN are 99.06% and 82.12%, re-

spectively. Furthermore, EvadeDroid is much more transferable as the 
transferability of the AEs generated by EvadeDroid is 58.05%, while 
23.23% for PiAttack.

5.6. The impact of search strategy on EvadeDroid

To answer RQ6, we perform an empirical analysis to evaluate the 
performance of EvadeDroid when utilizing an alternative search strat-

egy for manipulation. Specifically, we introduce a baseline manipu-

lation method based on GA for use in EvadeDroid, where the fitness 
function of the baseline is the same as the RS-based method. In the pro-

posed GA-based manipulation method, the individuals in the population 
(representing potential solutions) are binary strings with a length equal 
to the action set Δ, where 1 indicates the corresponding transformation 
in Δ should be used for manipulation. This approach enhances the solu-

tion across various generations. In this experiment, the query budget for 
GA is set at 50 due to scalability concerns, as evaluating more solutions 
obtained by applying different sequences of transformations to the mal-

ware app would significantly increase time overheads. Moreover, our 
preliminary experiment suggests considering 9 as the population size of 
the GA-based method. Note that a large population size negatively af-

fects the performance of GA, as the query budget is quickly consumed 
by individuals in the initial generations.

Table 7 presents the results of the baseline when DREBIN is the tar-

get malware detector. As shown in Table 7, using RS in EvadeDroid out-

performs GA. Specifically, RS not only leads to a 36.5% enhancement in 
ER but also accelerates EvadeDroid by ≈ 3×. These improvements are 
achieved with only 3 queries compared to GA’s 22 queries.

5.7. Discussion

Real-world applicability. EvadeDroid demonstrates its ability to 
generate practical adversarial Android apps by considering real-world 
attack limitations, such as operating in ZK settings. We assume that 
EvadeDroid has no knowledge about the target malware classifiers and 
can only query them to obtain the labels of Android apps. Additionally, 
in some experiments, we assume that the target malware detectors only 
provide hard labels in response to the queries. The performance of Evad-

eDroid in various experiments validates its practicality. In a hard-label 
setting, it efficiently evades five popular commercial antivirus products 
with an average evasion rate of nearly 80%. Furthermore, empirical 
evaluations of EvadeDroid on DREBIN, Sec-SVM, ADE-MA, MaMaDroid, 
and Opcode-SVM result in evasion rates of 89%, 85%, 86%, 95%, and 
80%, respectively. The success of our attack can be attributed to our ap-

proach of directly crafting adversarial apps in the problem space rather 
than perturbing features in the classifier’s feature space. From a defend-

er’s perspective, EvadeDroid can be utilized in adversarial re-training

to enhance the robustness of Android malware detection against real-

istic evasion attacks. Appendix G includes an experiment showcasing 
the adversarial robustness that can be achieved with the involvement 
of EvadeDroid.

Functionality preserving. We extended the tool presented in Pier-

azzi et al. (2020), in particular the organ-harvesting component, to 
manipulate malware apps. This tool ensures the preservation of func-
13

tionality by adding dead codes to malware apps without affecting their 
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semantics. Specifically, it incorporates opaque predicates, an obfuscated 
condition, to inject adversarial payloads into the apps while remaining 
unresolved during analysis, ensuring the payloads are never executed. 
Generally, verifying the semantic equivalence of two programs (e.g., 
a malware app and its adversarial version) is not trivial (Barr et al., 
2015). Therefore, similar to the prior studies (Li and Li, 2020; Pierazzi 
et al., 2020; Yang et al., 2017), our primary goal is to consider the in-

stallability and executability of apps to verify the correct functioning of 
the adversarial apps. To this end, we developed a scalable test frame-

work that installs and executes adversarial apps on an Android Virtual 
Device (AVD) and conducts monkey testing (Android Studio, 2023) to 
simulate random user interactions with the apps to guarantee the stabil-

ity of the apps. Furthermore, taking inspiration from prior research (Li 
et al., 2023), we incorporate a log statement within the opaque pred-

icate to ensure that the functionality of the manipulated apps remains 
unchanged. By monitoring the absence of log outputs, we can ascertain 
that the injected payloads are not executed. We select 50 adversarial 
apps, representing diverse malware families, for which their original 
malware apps can be installed and executed on the AVD without any 
issues. These apps are then subjected to our test framework. While the 
flaws in the Soot (Vallée-Rai et al., 1999) framework (e.g., the injection 
of payloads through Soot might result in incorrect updates to the func-

tion address table of the app), utilized in the manipulation tool (Pierazzi 
et al., 2020), affect the executability of a few cases, the majority of the 
apps passed the test.

Query efficiency. According to the experimental results obtained 
by applying EvadeDroid on academic and commercial malware detec-

tors, we demonstrated that it can successfully carry out a query-efficient 
black-box attack. For instance, our proposed attack often only needs an 
average of 4 queries to generate the AEs that can successfully bypass 
DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM. Moreover, 
we showed that EvadeDroid can effectively fool commercial antivirus 
products with less than two queries. One of the main reasons for be-

ing a query-efficient attack is due to the well-crafted transformations 
gathered in the action set. To maintain EvadeDroid’s performance, it is 
crucial to periodically update the action set by incorporating newly pub-

lished apps as new potential donors. Besides the quality of the action 
set, the presented optimization method is another important aspect of 
our proposed attack that can facilitate the identification of an optimal 
sequence of transformations, especially when the target detectors are 
robust to AEs (e.g., Sec-SVM). In fact, the proposed RS technique is an 
efficient sampling-driven search strategy that can quickly converge to a 
proper solution. Table 8 shows that Android evasion attacks often em-

ploy gradient-driven (e.g., gradient descent) and sampling-driven (e.g., 
GA) methodologies, where the latter is more practical for black-box eva-

sion attacks because they can overcome the challenges inherent in us-

ing gradient-driven attacks in ZK settings. Specifically, gradient-driven 
attacks require access to precise details of target malware detectors 
and are limited to differentiable-based classifiers, which are not ap-

plicable to attacks operating in ZK settings. Moreover, gradient-driven 
techniques are not well-suited for continuous features, whereas the 
malware domain predominantly involves discrete features. Ultimately, 
gradient-masking (Papernot et al., 2017) defenses implemented in tar-

get malware detectors demonstrate effectiveness in preventing gradient-

driven attacks. It is important to note that our proposed sampling-driven 
method demonstrates greater efficiency compared to query-based meth-

ods used in other studies (e.g., Croce et al., 2022; He et al., 2023; Xu 
et al., 2021, 2023). For instance, as shown in §5.3, EvadeDroid can ef-

fectively evade DREBIN with only 3 queries, whereas GenDroid needs 
93 queries. Additionally, as illustrated in §5.6, our proposed RS-based 
strategy requires ≈ 210 seconds to bypass DREBIN, while the GA-based 
methods extend the evasion time to ≈ 631 seconds.

Scalability and effectiveness. Our empirical evaluations demon-

strate the ability of the EvadeDroid to adapt and work effectively across 
a large scale of targets. Especially the results in §5.2 highlight the effec-
tiveness of our evasion attack in bypassing diverse malware detectors 
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Table 8

The prevalent search strategies employed in Android evasion attacks.

Search Strategy Description Study

Gradient-driven Utilizes gradients to iteratively adjust 
perturbations towards optimal 
adversarial perturbations.

Chen et al. (2018, 2019); Demontis et al. (2017); 
Grosse et al. (2017); Li and Li (2020); Li et al. 
(2021b); Pierazzi et al. (2020); Zhang et al. 
(2021)

Sampling-driven Involves exploring the solution space by 
sampling candidate perturbations to 
find optimal adversarial perturbations.

Croce et al. (2022); He et al. (2023); Li et al. 
(2023); Liu et al. (2019); Rathore et al. (2021); 
Xu et al. (2021, 2023); Yang et al. (2017)
(i.e., linear vs. non-linear malware classifiers, and gradient-based vs. 
non-gradient-based malware classifiers) that utilize different features 
(i.e., syntax, opcode, and semantic features) with different feature types 
(i.e., discrete and continuous features). Furthermore, although manip-

ulating applications within the problem space is inherently a time-

consuming endeavor, the efficiency in querying allows our attack to 
autonomously generate AEs at a good speed, eliminating the need for 
manual and labor-intensive methods. Our empirical assessment in §5.5

also demonstrates that AEs generated by EvadeDroid to target a specific 
detector exhibit reusability across various malware detectors.

Potential applications. EvadeDroid shows promise for various real-

world applications within the realm of Android malware detection. 
Security professionals and organizations involved in the development 
and deployment of malware detectors can utilize EvadeDroid for secu-

rity testing and evaluation. For instance, they can simulate adversarial 
scenarios to identify vulnerabilities and enhance the robustness of their 
systems against real-world threats. The adversarial training capabilities 
of the system render EvadeDroid a helpful asset for developers seek-

ing to strengthen malware detectors against real-world evasion attacks. 
Moreover, our attack can be instrumental in the development of coun-

termeasures, allowing cybersecurity experts to understand and address 
potential weaknesses in existing malware detection systems.

6. Limitations and future work

In this section, we elaborate on the limitations of our proposed 
method, which can be considered as future work. One of the concerns 
of EvadeDroid is the adversarial payload size (i.e., the relative increase 
in the size of AEs) that might be relatively high, especially for the small 
Android malware apps. This deficiency may cause malware detectors to 
be suspicious of the AEs, particularly for popular Android applications. 
Improving the organ harvesting used in the program slicing technique, 
in particular, finding the smallest vein for a specific organ, can address 
this limitation as each organ has usually multiple veins of different sizes.

Additionally, EvadeDroid particularly crafts malware apps to mis-

lead the malware detectors that use static features for classification. 
We do not anticipate our proposed evasion attack to successfully de-

ceive ML-based malware detectors that work with behavioral features 
specified by dynamic analysis as the perturbations are injected into ma-

licious apps within an IF statement that is always False. Therefore, 
it remains an interesting avenue for future work to evaluate how our 
proposed attack can bypass behavior-based malware detectors.

Furthermore, since EvadeDroid uses a well-defined optimization 
problem outlined in Algorithm 1, it can be extended to other platforms 
(e.g., Windows) if attackers offer problem-space transformations that 
are tailored to manipulate real-world objects (e.g., Windows Portable 
Executable files). This is because the transformations used in Evade-

Droid can only be applied to manipulate Android applications. We leave 
further exploration as future work since it is beyond the scope of this 
study.

Finally, our study comprehensively covers various malware detec-

tion systems, employing diverse classifiers on different features with 
various types. However, there is an opportunity to improve the validity 
of our findings since the evaluation is conducted in controlled labora-
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tory settings. Future research should delve deeper into the applicability 
of our adversarial attack framework in real-world environments, where 
dynamic factors like evolving malware landscapes and deployment sce-

narios may impact the attack’s performance.

7. Conclusions

This paper introduces EvadeDroid, a novel Android evasion attack in 
the problem space, designed to generate real-world adversarial Android 
malware capable of evading ML-based Android malware detectors in 
a black-box setting. Unlike previous approaches, EvadeDroid directly 
operates in the problem space without initially focusing on finding 
feature-space perturbations. Experimental results demonstrate the effec-

tiveness of EvadeDroid in deceiving various academic and commercial 
malware detectors.
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Appendix A. Problem-space constraints

To generate realizable AEs, adversarial attacks need to consider the 
following four problem-space constraints (Pierazzi et al., 2020):

• Available transformations describe the types of manipulations 
(e.g., adding dead codes) that an adversary can utilize to modify 
malware apps.

• Preserved semantics constraint explains that the semantics of an 
Android app should be maintained after applying a transformation 
to the app.

• Robustness-to-preprocessing constraint describes the require-

ment that non-ML methods (e.g., preprocessing operators) should 
not be able to undo the adversarial changes.

• Plausibility constraint explains adversarial apps must look realistic 
(i.e., naturally created) under manual inspection.

Appendix B. Donors evaluation

In this evaluation, we assess the influence of our donor selection 
strategy on the performance of EvadeDroid. Two action sets, denoted 

as Δ1 and Δ2, are provided, each containing 20 transformations. The 
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Table B.9

The performance of EvadeDroid in attacking DREBIN when it uti-

lizes two different action sets Δ1 and Δ2 .

Action Set ER (%) Avg. No. of 
Queries

Avg. No. of

Transformations

Δ1 66.0 3 2

Δ2 68.0 7 3

transformations in Δ1 and Δ2 are chosen at random from the collec-

tion of transformations extracted from the 10 most similar apps and 
the 10 least similar apps to malware apps, respectively. To understand 
the process of finding similar apps, refer to Section 4.3.1. We then use 
these action sets in EvadeDroid to transform 50 randomly selected mal-

ware apps into AEs. Table B.9 presents a comparison of the impact of 
Δ1 and Δ2 on EvadeDroid’s performance. As can be seen in this table, 
when using Δ1, the number of queries and transformations is signifi-

cantly reduced compared to Δ2. This finding validates that leveraging 
benign apps that resemble malware apps as the donors of transforma-

tions can reduce the cost of generating AEs, specially in terms of the 
required queries.

Appendix C. Implementation details

The proposed framework illustrated in Fig. C.8 is implemented with 
Python 3 and Java 8. The source code1 of the pipeline has been made 
publicly available to allow reproducibility. The components of Evade-

Droid’s pipeline are clearly depicted in Fig. C.8. This section reviews 
some of the components that have not been previously described in de-

tail in the paper.

• Component 7. To identify API calls in donor apps, we utilize the 
tool provided in Spreitzenbarth (2014). This tool leverages Apk-

tool (Apktool, 2010) to access the DEX files of Android apps, which 
are represented as smali files. It employs string analysis techniques 
to scan these files and identify the API calls present within them.

• Component 8. We extend the tool presented in Pierazzi et al. 
(2020) to extract API calls from donors because this tool, which 
is based on the Soot framework, originally harvests Activities and 
URLs only.

• Component 10. The tool presented in Pierazzi et al. (2020) has 
also been used to inject gadgets into malware apps (i.e., hosts). 
This tool ensures the fulfillment of both the preserved-semantic and 
robustness-to-preprocessing constraints by utilizing opaque predi-

cates (Moser et al., 2007) for transplanting the gadgets into hosts. 
The opaque predicates employed in the tool are obfuscated condi-

tion statements that encapsulate the injected gadgets. During run-

time, these statements always evaluate to False, thereby preserv-

ing the semantics of malware apps as the injected gadgets remain 
unexecuted. Furthermore, the preprocessing operators are unable 
to eliminate the injected gadgets as the result of the statement can-

not be statically resolved from the source code during design time. 
It is important to note that the generated AEs are plausible. This is 
because the manipulation of malware apps involves the injection of 
realistic gadgets found in benign apps. Additionally, the injection of 
the gadget occurs in unnoticeable injection points, maintaining the 
homogeneity complexity of the host’s components. The inclusion 
of gadgets may enhance EvadeDroid’s performance by introducing 
more features in the manipulated apps. For further insights into the 
tool, we refer readers to Pierazzi et al. (2020).
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1 https://anonymous .4open .science /r /EvadeDroidMain -1E69.
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Appendix D. Android malware detectors

DREBIN (Arp et al., 2014) and Sec-SVM (Demontis et al., 2017) are 
two prominent approaches in Android malware detection. DREBIN uti-

lizes binary static features and employs linear Support Vector Machine 
(SVM) for classification. It extracts various features, including requested 
permissions and suspicious API calls, from the Manifest and DEX files 
of APKs through string analysis (Gibert et al., 2020). These features are 
then used to construct a feature space for the classifier. In DREBIN, each 
app is represented by a sparse feature vector, where each entry indicates 
the presence or absence of a specific feature. Secure SVM (Sec-SVM) is 
an enhanced version of DREBIN that aims to enhance the resilience 
of linear SVM against adversarial examples. The core concept behind 
Sec-SVM is to increase the cost of evading the model when generat-

ing adversarial examples. Compared to DREBIN, Sec-SVM relies on a 
larger set of features for malware detection, making it more challeng-

ing to evade. Since Sec-SVM is a sparse classification model, it leverages 
a greater number of features to improve its malware detection capabil-

ities

ADE-MA (Li and Li, 2020) is an ensemble of deep neural networks 
(DNNs) that is strengthened against adversarial examples with adversar-

ial training. The adversarial training method tunes the DNN models by 
solving a min-max optimization problem, in which the inner maximizer 
generates adversarial perturbations based on a mixture of attacks, i.e. 
iterative “max” Projected Gradient Descent (PGD) attacks.

MaMaDroid (Onwuzurike et al., 2019) utilizes static analysis to 
detect Android malware. The goal of MaMaDroid is to capture the se-

mantics of an Android app by employing a Markov chain based on 
abstracted sequences of API calls. The process begins with generating a 
call graph for each Android app. From this call graph, the sequences of 
API calls are extracted and abstracted into different modes, including 
families, packages, and classes. Subsequently, MaMaDroid constructs a 
Markov chain for each abstracted API call in an APK, where each state 
represents a family, package, or class, and the transition probabilities 
indicate the state transitions. Finally, feature vectors incorporating con-

tinuous features are created based on the generated Markov chains.

Opcode-SVM (Jerome et al., 2014) is an Android malware detection 
method that utilizes static opcode-sequence features instead of prede-

fined features. This approach focuses on performing n-gram opcode 
analysis to represent apps in a feature space, where a malware classi-

fier is constructed. Specifically, the method employs a linear SVM with 
5-gram binary opcode features to effectively detect Android malware.

Appendix E. Experimental settings

Android malware detectors. We built DREBIN, Sec-SVM, Ma-

MaDroid, and ADE-MA based on their available source codes (i.e., Bit-

bucket, 2020; Github, 2020; S2Lab, 2020) that have been published in 
online repositories. Moreover, we have reproduced Opcode-SVM based 
on the implementation details provided in Jerome et al. (2014). The hy-

perparameters of the reproduced malware detectors are similar to those 
considered in their original studies (Jerome et al., 2014; Li and Li, 2020; 
Onwuzurike et al., 2019; Pierazzi et al., 2020). Note that in our paper, 
the reproduced MaMaDroid (Onwuzurike et al., 2019) is based on the 
K-Nearest Neighbors (KNN) algorithm with 𝑘 = 5. This malware clas-

sifier operates in the family mode in all experiments. KNN algorithm 
is used in MaMaDroid as we empirically concluded that KNN performs 
better on our dataset than other classifiers employed in Onwuzurike et 
al. (2019).

Baseline evasion attacks. We implemented Sparse-RS, Shadow-

Droid, and GenDroid with Python 3 based on their relevant studies (i.e., 
Croce et al., 2022; Xu et al., 2023; Zhang et al., 2021). Moreover, Pi-

Attack (Pierazzi et al., 2020) has been built based on their available 
source codes published in S2Lab (2020).

EvadeDroid. Besides query budget 𝑄 and the allowed adversarial 

payload size 𝛼 that have been mentioned earlier, 𝑛 is another hyper-

https://anonymous.4open.science/r/EvadeDroidMain-1E69


Computers & Security 139 (2024) 103676H. Bostani and V. Moonsamy

Fig. C.8. The details of the proposed framework. The blue and gray areas represent the workflows of EvadeDroid and target black-box malware detection, respec-

tively.
parameter that shows the length of overlapping sub-string of opcodes’ 
types in 𝑛-gram-based feature extraction. In this study, we consider 
𝑛 = 5 because in Jerome et al. (2014), the authors have shown that 
the best classification performance for opcode-based Android malware 
detection can be achieved with the 5-gram features. Furthermore, we 
select the top-100 benign apps as suitable donors for gadget extraction. 
Note that we consider 100 donors as organ harvesting from donors is a 
time-consuming process.

Appendix F. Baseline attacks

PiAttack (Pierazzi et al., 2020) is a white-box attack in the problem 
space that generates real-world AEs using transformations called gad-

gets. This attack comprises two main phases: the initialization phase 
and the attack phase. In the initialization phase, key benign features are 
identified, and then gadgets corresponding to the identified features are 
collected from benign apps. In the attack phase, a greedy search strat-

egy is used to find optimal perturbations by selecting gadgets based 
on their contribution to the feature vector of the malware app. This 
process is repeated until the modified feature vector is classified as a 
benign sample. Note that PiAttack incorporates both primary features 
and side-effect features into malware apps. The primary features are 
added to bypass detection, while the side-effect features are included to 
meet problem-space constraints.

Sparse-RS (Croce et al., 2022) attack is a soft-label attack that grad-

ually converts malware samples into AEs by querying the target model. 
Sparse-RS, which is a gray-box attack in the malware domain, finds the 
𝑙0-bounded perturbations (i.e., the maximum allowed perturbations) 
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via random search. Note that we set initial decay factor 𝛼𝑖𝑛𝑖𝑡 = 1.6 and 
sparsity level 𝑘 = 180 similar to Croce et al. (2022) and query budget 
𝑄 = 1000.

ShadowDroid (Zhang et al., 2021) is a black-box problem-space at-

tack that generates AEs by building a substitute classifier, which is a 
linear SVM. The substitute classifier is built on binary feature space 
compromised by permissions and API calls. This attack makes a key 
feature list based on the importance of features specified by the sub-

stitute classifier. The attack adds the key features to a malware app 
and queries the target classifier to check if the manipulated app is clas-

sified as malware. ShadowDroid continues this process until reaching 
the maximum query budget or generating an AEs. We set query bud-

get 𝑄 = 100, following a similar setting as in Zhang et al. (2021). Note 
that ShadowDroid is not fully compatible with the ZK setting as it relies 
on the assumption that the target detectors utilize permissions and API 
calls for malware detection. However, since it is a query-based problem-

space attack, it serves as a proper naive problem-space baseline attack 
for our study.

GenDroid (Xu et al., 2023) is a black-box Android evasion at-

tack building upon GenAttack (Alzantot et al., 2019). This query-based 
attack utilizes GA to discover adversarial perturbations in soft-label 
settings. GenDroid extends GenAttack by redesigning the fitness func-

tion, adopting a new evolutionary strategy, and incorporating Gaussian 
Process Regression (GPR) to guide evolution. Specifically, the fitness 
function is defined through a logarithmic transformation, incorporating 
adjustable weight parameters (𝛼 and 𝛽) and a norm-bounded pertur-

bation. The selection process prioritizes elite individuals with higher 
fitness scores, and the Softmax function is employed to convert fitness 
scores into probabilities. GPR is introduced to predict fitness values for 
individuals in the next generation. We empirically set the population 

size to 8 and the maximum number of generations to 50.
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Table G.10

The impact of various training strategies on the utility of DREBIN.

Model No. of AEs TPR (%) FPR (%)

Standard Training N/A 80.8 1.7

Adversarial Re-training

500 78.3 1.4

1000 74.9 0.9

1500 68.7 0.5

1769 32.7 0.2

Appendix G. Data augmentation

In this experiment, we evaluate the performance of EvadeDroid in 
enhancing the adversarial robustness of Android malware detection. To 
achieve this, we transform malware samples from the original train-

ing set into AEs using EvadeDroid. Subsequently, we re-train DREBIN 
using the modified dataset, resulting in a model that is robust to Evad-

eDroid. Our empirical analysis demonstrates that incorporating AEs 
generated by EvadeDroid in the training set of DREBIN can effectively 
thwart the adversarial effect of EvadeDroid. However, the number of 
AEs employed has an effect on the DREBIN’s utility (i.e., the original 
performance of DREBIN). Table G.10 reveals that the addition of more 
AEs to the training set reduces the TPR of DREBIN. For instance, the 
TPR of DREBIN is reduced by 32.7% compared to the standard train-

ing when 1769𝐾 malware samples in the training set are transformed 
into AEs. It is noteworthy that out of the 2𝐾 malware samples in the 
training set, EvadeDroid is capable of generating 1769 AEs.
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