No Free Charge Theorem: A Covert Channel
via USB Charging Cable on Mobile Devices

Riccardo Spolaor'®) | Laila Abudahi?, Veelasha Moonsamy®, Mauro Conti,
and Radha Poovendran?

! University of Padua, Padua, Italy
{rspolaor,conti}@math.unipd.it
2 University of Washington, Seattle, USA
{abudahil,rp3}Cuw.edu
3 Radboud University, Nijmegen, The Netherlands
email@veelasha.org

Abstract. More and more people are regularly using mobile and
battery-powered handsets, such as smartphones and tablets. At the same
time, thanks to the technological innovation and to the high user demand,
those devices are integrating extensive battery-draining functionalities,
which results in a surge of energy consumption of these devices. This
scenario leads many people to often look for opportunities to charge
their devices at public charging stations: the presence of such stations is
already prominent around public areas such as hotels, shopping malls,
airports, gyms and museums, and is expected to significantly grow in
the future. While most of the times the power comes for free, there is no
guarantee that the charging station is not maliciously controlled by an
adversary, with the intention to exfiltrate data from the devices that are
connected to it.

In this paper, we illustrate for the first time how an adversary could
leverage a maliciously controlled charging station to exfiltrate data from
the smartphone via a USB charging cable (i.e., without using the data
transfer functionality), controlling a simple app running on the device—
and without requiring any permission to be granted by the user to send
data out of the device. We show the feasibility of the proposed attack
through a prototype implementation in Android, which is able to send
out potentially sensitive information, such as IMEI and contacts’ phone
number.

1 Introduction

Market studies predicted that in 2011 smartphone sales would surpassed that
of desktop PCs [31]. To this date, smartphones remain the most used handheld
devices. This is partly due to the fact that these devices are more powerful and
provide more functionalities than the traditional feature phones. As a result, users
can perform a variety of tasks on an actual smartphone device, which in the past
would have been possible only on a desktop PC. In order to carry out such tasks,
the smartphone platform offers its users a plethora of applications (apps).

© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 83-102, 2017.
DOI: 10.1007/978-3-319-61204-1_5



84 R. Spolaor et al.

Moreover, as users are constantly using apps (e.g., the gaming app, Pokémon
Go) and would eventually require to recharge their smartphones, the demand
for public charging stations have increased significantly in the last decade. Such
stations can be seen in public areas such as airports, shopping malls, gyms and
museums, where users can recharge their devices for free. In fact, this trend is
also giving rise to a special type of business®, which allows shop owners to install
charging stations in their stores so as to boost their sales by providing free phone
recharge to shoppers.

As the phone recharging is usually for free, however, at the same time one
cannot be sure that the public charging stations are not maliciously controlled by
an adversary. The Snowden revelations gave us proof that civilians are constantly
under surveillance and nations are competing against each other by deploying
smart technologies for collecting sensitive information en mass. In our work, we
consider an adversary (e.g., manufacturers of public charging stations, Govern-
ment agencies) whose aim is to take control over the public charging station and
whose motive is to exfiltrate data from the user’s smartphone once the device is
plugged into the station.

In this paper, we demonstrate the feasibility of using power consumption (in
the form of power bursts) to send out data over a Universal Serial Bus (USB)
charging cable, which acts as a covert channel, to the public charging station.
We implemented a proof-of-concept app, PowerSnitch, that can send out bits
of data in the form of power bursts by manipulating the power consumption
of the device’s CPU. Interestingly, PowerSnitch does not require any special
permission from the user at install-time (nor at run-time) to exfiltrate data out
of the smartphone over the USB cable. On the adversary’s side, we designed and
implemented a decoder to retrieve the bits that have been transmitted via power
bursts. Our empirical results show that we can successfully decode a payload of
512 bits with a 0% Bit Error Ratio (BER). In addition, we stress that the goal
of this paper is to assess for the first time the feasibility of data transmission on
such a covert channel and not to optimize its performance, which we will tackle
as future work.

We focus primarily on Android, as it is currently the leading platform and
has a large user base. However, we believe that this attack can be deployed on
any other smartphone operating systems, as long as the device is connected to
a power source at the public charging station.

Our contributions are as follows:

1. To our knowledge, we are the first to demonstrate the practicality of using
the power feature of a USB charging cable as a covert channel to exfiltrate
data, in the form of power bursts, from a device while it is connected to a
power supplier. The attack works in Airplane mode as well.

2. We implemented a prototype of the attack, i.e., we designed and implemented
its two components: (i) We built a proof-of-concept app, PowerSnitch, which
does not require any permission granted by the user to communicate bits

! chargeitspot.com, chargetech.com.


https://chargeitspot.com
https://chargetech.com/

No Free Charge Theorem: A Covert Channel via USB Charging Cable 85

of information in the form of power bursts back to the adversary; (ii) The
decoder is deployed on the adversary side, i.e., public charging station to
retrieve the binary information embedded in the power bursts.

3. We are able with our prototype to actually send out data using power bursts.
Our prototype demonstrate the practical feasibility of the attack.

The rest of the paper is organized as follows. In Sect. 2, we present a brief
literature overview of covert channel and data exfiltration techniques on smart-
phones. In Sect. 3, we include some background knowledge on Android operating
system, and signal transmission and processing. In Sect. 4, we provide a descrip-
tion of our covert channel and decoder design, followed by the experimental
results in Sect. 5 and discussion in Sect. 6. We conclude the paper in Sect. 7.

2 Related Work

In this section, we survey the existing work in the area of covert channels on
mobile devices. We also present other non-conventional attack vectors, such as
side channel information leakage via embedded sensors which can be used for
data exfiltration.

Covert Channels — A covert channel can be considered as a secret channel used
to exfiltrate information from a secured environment in an undetected manner.
Chandra et al. [8] investigated the existence of different covert channels that can
be used to communicate between two malicious applications. They examined
the common resources (such as battery) shared between two malicious applica-
tions and how they could be exploited for covert communication. Similar studies
presented in [14,18,21,26] exploited unknown covert channels in malicious and
clean applications to leak out private information.

As demonstrated by Aloraini et al. [1], the adversary is further empowered
as smartphones continue to have more computational power and extensive func-
tionalities. The authors empirically showed that speech-like data can be sent
over a cellular voice channel. The attack was successfully carried out with the
help of a custom-built rootkit installed on Android devices. In [10], Do et al.
demonstrated the feasibility of covertly exfiltrating data via SMS and inaudi-
ble audio transmission, without the user’s knowledge, to other mobile devices
including laptops.

In our work, we present a novel covert channel which exploits the USB
charging cable by leaking information from a smartphone via power bursts. Our
proposed method is non-invasive and can be deployed on non-rooted Android
devices. We explain the attack in more detail in Sect. 4.1.

Power Consumption by Smartphones — In order to prolong the longevity of
the smartphone’s battery, it is crucial to understand how apps consume energy
during execution and how to optimize such consumption. To this end, several
works [4,6,23,33] have been proposed. Furthermore, the authors from [13,17]



86 R. Spolaor et al.

studied apps’ power consumption to detect anomalous behavior on smartphones,
thus leading to detection of malware.

Since existing work focus on energy consumption on the device, our attack
would therefore go undetected as the smartphone’s CPU sends small chunks
of encoded data, which are translated into power bursts, back to the public
charging station. Additionally, state-of-the-art attacks that have been performed
while the smartphone is charging [15,19] exploit vulnerabilities of USB interface
rather than actual energy consumption.

Attack Vectors using Side Channel Leaks — Modern smartphones are embedded
with a plethora of sensors that allow users to interact seamlessly with the apps
on their smartphones. However, these sensors have access to an abundance of
information stored on the device that can get exfiltrated. These data leaks can
be used as a side channel to infer, otherwise undisclosed, sensitive information
about the user or device [2,16,32].

The authors from [3,22] demonstrated how accelerometer readings can be
used to infer tap-, gesture- and keyboard-based input from users to unlock their
smartphones. Similarly, Spreitzer [27] showed that the ambient-light sensor can
be exploited to infer users’ PIN input. Moreover, considering network traffic as
a side-channel, it is possible to identify the set of apps installed on a victim’s
mobile device [28,29], and even infer the actions the victim is performing with
a specific app [9].

As pointed out in the aforementioned existing work, the adversarial model
did not require any special privileges to exploit side channel leaks to recover
data exfiltrated via sensors. In this paper, we show that our custom app, Pow-
erSnitch, does not require any special permissions to be granted by the user in
order to communicate information (in terms of power bursts) to the adversary.
Furthermore, we stress that while the INTERNET permission is one approach of
data exfiltration, our proposed work is different as we show the feasibility and
practicability of using a USB cable to exfiltrate data. In particular, our attack
still works even when the phone is switched to Airplane mode and defeats exist-
ing USB charging protection dongles, as in [7], since we only require the USB
power pins to exfiltrate data.

3 Background Knowledge

In this section, we briefly recall several concepts that we use in our paper about
Android operating system in Sect. 3.1, and signal transmission and processing
in Sect. 3.2.

3.1 Android System and Permissions

In the Android Operating System (OS), apps are distributed as APK files. These
files are simple archives which contain bytecode, resources and metadata. A user
can install or uninstall an app (thus the APK file) by directly interacting with



No Free Charge Theorem: A Covert Channel via USB Charging Cable 87

the smartphone. When an Android app is running, its code is executed in a
sandbox. In practice, an app runs isolated from the rest of the system, and it
cannot directly access other apps’ memory. The only way an app could gain
memory access is via the mediation of inter-process communication techniques
made available by Android. These measures are in place to prevent the access of
malicious apps to other apps’ data, which could potentially be privacy-sensitive.

Since Android apps run in a sandbox, they not only have restriction in shared
memory usage, but also to most system resources. Instead, the Android OS pro-
vides an extensive set of Accessible Programming Interfaces (APIs), which allows
access to system resources and services. In particular, the APIs that give access
to potentially privacy-violating services (e.g., camera, microphone) or sensitive
data (e.g., contacts) are protected by the Android Permission System [11]. An
app that wants access to protected data or service must declare in the form of
permission (identified by a string) in its manifest file. The list of permissions
needed by an app is shown to the user when installing the app, and cannot
be changed while an app is installed on the device. With the introduction of
Android M (i.e., 6.0), permissions can be dynamically granted (by users) during
an app’s execution.

The permission system has also the goal of reducing the damage in case of a
successful attack that manages to take control of an app, by limiting the resources
that app’s process has access to. Unfortunately, permission over-provisioning is a
common malpractice, so much so that research efforts have been spent in trying
to detect this problem [5]. Moreover, an app asking for permissions not related
to its purpose (or functionality) can hide malicious behaviors (i.e., spyware or
malware apps) [20].

3.2 Signal Transmission and Processing

In this section, we provide some background information on bit transmission,
and signal processing and decoding used in our proposed decoder (see Sect. 4.4).

Bit Transmission — To enable bit transmission over our channel, an understand-
ing of basic digital communication systems is essential. For proof-of-concept pur-
poses, the design of our bit transmission system was inspired by amplitude-based
modulation in the digital communication literature.

Amplitude-Shift Keying (ASK) is a form of digital modulation where digital
bits are represented by variations in the amplitude of a carrier signal. To send bits
over our channel, we used On-Off Signaling (OOS), which is the simplest form
of ASK where digital data is represented by the presence and absence of some
pulse p(t) for a specific period of time. Figure 1a shows the difference between a
Return-to-Zero (RZ) and a Non-Return-to-Zero (NRZ) on-off encoding. In NRZ
encoding, bits are represented by a sufficient condition (a pulse) that occupies
the entire bit period T}, while RZ encoding represents bits as pulses for a duration
of Tp/2 before it returns to zero for the following T} /2 period.

On the other hand, Fig.1b shows the difference between a unipolar and a
polar RZ on-off signaling. In a polar RZ encoding, two different conditions,



88 R. Spolaor et al.

different-sign pulses are used to encode different bits(zeros/ones) while the pres-
ence and absence of a single pulse, a positive one in our case, are used to encode
different bits.

For the sake of our channel design, it is safe to assume that we can only
increase the power consumption of a phone at certain times and hence, are able
to generate only positive (high) bursts. Thus, a unipolar encoding seems more
relative and applicable for our channel. Moreover, successive peaks, such as the
first two zeros in Fig. la, are easier to identify, and thus decode, in the RZ-
encoded signal than in the NRZ one. This advantage of RZ over NRZ becomes
especially apparent in cases where the bit period is expected not to be restric-
tively fixed in the received signal whether it is due to expected high channel
noises or lack of full control of the phone’s CPU. Therefore, unipolar RZ on-off
signaling was used to encode leaked bits over our covert channel.

S o IR W S

Polar RZ
NRZ _, \_‘ ‘_
RZ ’_‘ ’_‘ ’_‘ Unipolar RZ

Encoded Bits ToJo)Yi1)Yo)i1}) Encoded Bits

0 1 1 0 0

(a) Return-to-Zero (RZ) and Non- (b) A Polar and a Unipolar encoding of
Return-to-Zero (NRZ) On-Off Encoding.  an RZ On-Off Signal.

Fig. 1. A comparison between bit encoding methods

Signal Processing and Decoding — After choosing the appropriate encoding
method to transmit bits, it is also essential to think about the optimal receiver
design and how to process the received signal and decode bits with minimum
error probability at the receiver side of the channel. As known in the digital
communication literature, matched filters are the optimal receivers for Additive
White Gaussian Noise (AWGN) channels. We refer the reader to Sect. 4.2 of [24]
for a detailed proof.

Matched Filters are obtained by correlating the received signal R(t) with the
known pulse that was first used to encode a transmitted bit, in this case P(t)
with period Tj. After correlation, the resulted signal is then sampled at time
T}, which means that the sampling rate equals to 1/T}, samples/seconds. This
way, each bit is guaranteed to be represented by only one sample. The decoding
decision will then be made based on that one sample value; if the sample value
is more than a given threshold, this indicates the presence of P(t); and hence a
zero in our case, while a sample value below the threshold indicates the absence
of P(t) and hence a one is decoded.

However and most importantly, for matched filters to work as expected, it is
essential to have fixed bit period Tj throughout the entire received signal. If the
periods of the received bits were varying, the matched filter samples taken with
the 1/T} sampling rate will not be as optimal and representative of the bit data
as expected and synchronization will be lost.



No Free Charge Theorem: A Covert Channel via USB Charging Cable 89

Since there exist infrequent phone-specific, OS-enforced conditions that can
affect the power consumption of a phone, the noises on our channel are expected
to be more complex to fit in an AWGN model. Hence, a matched filter receiver
is most likely not the optimal receiver for our channel. More creative decoder
design decisions are needed to maximize the throughput of our channel and
minimize the error probability.

4 Covert Channel Using Mobile Device Energy
Consumption

In this section, we elaborate on the components that make up our covert channel
attack. We begin by giving an overview of the attack in Sect.4.1. We then define
the terms and parameters for transmission in Sect. 4.2, followed by a description
of each component of the attack: PowerSnitch app in Sect.4.3 and the energy
traces decoder in Sect. 4.4.

4.1 Overview of Attack

As illustrated in Fig.2, the attack scenario considers two components: the
victim’s Android mobile device (sender) and an accomplice’s power supplier
(receiver). Victim’s mobile device is connected to a power supplier (controlled
by the adversary) through a USB cable.

The left side of Fig. 2 depicts what happens after the victim has installed our
proof-of-concept app, PowerSnitch. The app is able to exfiltrate victim’s private
information, which gets encoded as CPU bursts with a specific timing. Indeed, as
the CPU is one of the most energy consuming resources in a device, a CPU burst
can be directly measured as a “peak” based on the amount of energy absorbed
by a mobile device. The right side of Fig.2 illustrates how the energy supplier
is able to measure (with a given sampling rate) the electric current provided to
the mobile device connected to the public charging station. Then, such electric
measurement, which is considered as a signal, is given as input to a decoder. It
should be noted that the adversary, i.e., the public charging station, has control
of the power supplier, and thus is able to control the amount of current provided
to the device — even if it has the “fast charge” capability.

In our proposed covert channel attack, we consider situations in which users
connect their mobile devices for more than 20 min. There are several scenar-
ios that fulfill such time requirements. Examples are: (i) recharging a device
overnight in a hotel room; (ii) making use of locked boxes in shopping malls for
charging mobile phones; (iii) recharging devices on planes, in trains and cars.

In addition, we argue that those time requirements are more than reasonable
since generally, 72% of users leave their phones on charging for more than 30 min,
with an average time of 3h and 54 min, as reported in [12]. This means that:
(i) the mobile device is in stand-by mode; (ii) CPU and the use of other energy
consuming resources (e.g., Wi-Fi or 3/4g data connection) usage is limited only
to the OS and background apps. Moreover, since there is no user interaction, it



90 R. Spolaor et al.

is reasonable to assume that the phone screen, which has a relevant impact on
energy consumption, will stay off for the aforementioned period of time.

Moreover, it is also worth noting that the attack is still feasible if there is
no data connection between the victim’s device and the power supplier, such
as Media Transfer Protocol (MTP), Photo Transfer Protocol (PTP), Musi-
cal Instrument Digital Interface (MIDI). This is possible as our methodology
only requires power consumption to send out the power bursts. Moreover, from
Android version 6.0, when a device is connected via USB, it is set by default
to “Charging” mode (i.e., just charge the device), thus no data connection is
allowed unless the user switches on data connection manually. This improve-
ment in security feature does not impact our proposed attack as we do not make
use of data connection to transfer the power bursts.

Public Charging
Station Controlled
by the Adversary

Victim’s private
Information 7
Decoder

Victim’s Android
Mobile Device

Victim’s private
Information 7
PowerSnitch App

Electric power supplied

USB cable

Fig. 2. The schema of the components involved in the attack.

4.2 Terminology and Transmission Parameters

In this section, we define the necessary terminology to identify concepts used in
the rest of the paper:

— Payload is the information that has to be sent from the device to the receiver.
— Transmission is the whole sequence of bits transmitted in which the payload
is encoded.

In order to obtain a successful communication, the sender and the receiver
need to agree on the parameters of the transmission.

— Period is the time interval during which a bit is transmitted.

— Duty cycle is the ratio between burst and rest time in a period 7Ty. For exam-
ple: if a burst lasts for T,/2, the duty cycle will be 50%.

— Preamble is the sequence of bit used to synchronize the transmission. Usually
a preamble is used at the beginning of a transmission, but it can also be used
within a transmission in order to recover the synchronization in case of error.
In our case, we used a preamble composed of 8 bits.



No Free Charge Theorem: A Covert Channel via USB Charging Cable 91

4.3 PowerSnitch App: Implementing the Attack on Android

The first component of our covert channel we discuss is the proof-of-concept
which we called PowerSnitch app. This app, used for the covert channel exploit,
has been designed as a service in order to be installed as a standalone app or a
library in a repackaged app. Henceforth, we refer to both these variants simply
with the term “app”.

PowerSnitch app requires only the WAKE_LOCK permission and does not need
root access to work. Such permission allows PowerSnitch app to wake and force
execute the CPU while the device is in sleep mode, so that it can start to trans-
mit the payload. We stress that since it is running as a background service,
PowerSnitch app still works even when user authentication mechanisms (e.g.,
PIN, password) are in place. Moreover, since it does not use any conventional
communication technology (e.g., Wi-Fi, Bluetooth, NFC), PowerSnitch app can
exfiltrate information even if the device is in airplane mode. It is worth men-
tioning that Android M (i.e., 6.0) introduced the Doze mode [30], a battery
power-saving optimization which reduces the apps activity when the device is
inactive and running on battery for extended periods of time. When it is in
place, Doze mode stops background CPU and network activity (ignoring wake-
locks, job scheduler, Wi-Fi scan, etc.). Then on periodic time intervals (i.e.,
maintenance windows), the system runs all pending jobs, synchronization and
alarms. However, such optimization is not active when a device is connected to a
power source or when the screen is on. This means that Doze does not affect our
proposal since we need the wakelock function but also the device to be plugged
to a power source. Moreover, since our proposed attack needs also the status of
the battery, it does not need any permission in order to obtain such information:
in fact, it is sufficient to only register at run-time (not even in the manifest) a
specific broadcast receiver (i.e., ACTION_BATTERY_CHANGED).

In Fig. 3, we illustrate the modules of PowerSnitch app. It is composed of
three modules: Payload encoder, Transmission controller and Bursts generator.
Payload encoder takes the payload as input and outputs an array of bits. The
payload can be any element that can be serialized into an array of bits. We
use strings as payloads, they are first decomposed into an array of characters
and then, using the ASCII code of each character, into an array of bits. Pay-
load Encoder can also add to its output array synchronization bits (e.g., the
preamble), and error checking codes (e.g., CRC).

Transmission controller is in charge of monitoring the status of the device
with the purpose of understanding when it is feasible to transmit through the
covert channel. Indeed, in order to not be detected by the user, it checks whether
all the following conditions are satisfied: (i) the USB cable is connected; (ii) the
screen is off; and (iii) the battery is sufficiently charged (see Sect.6). If our app
receives a broadcast intent from the Android OS that invalidates one of the
aforementioned conditions, Transmission controller module will interrupt the
transmission. It is worth noticing that to obtain all this information, Power-
Snitch app does not need any additional permission. From the GUI app used in



92 R. Spolaor et al.

PowerSnitch App

Android System
Broadcast intents

Payload Payload encoder ]

i Start/ stop service [ T . troll ] Battery/Cable/Screen
7777777 (optional) .~ ransmission controller status
Period (ms) [ Bursts generator ]

’ Legend: { _Signals / intents Llnput parameters ‘

Fig. 3. The modules involved in the PowerSnitch app.

our experiments, we are also able to start or stop PowerSnitch app (represented
in Fig. 3 with a dotted arrow).

The last component of PowerSnitch app is Bursts generator. The task of this
component is to convert the encoded payload into bursts of energy consumption.
These bursts will generate a signal that can be measured at the other end of the
USB cable (i.e., the power supplier). In order to obtain these bursts of energy
consumption, Bursts generator module can use a power consuming resource of
the mobile device such as CPU, screen or flashlight. Our proof-of-concept, Bursts
generator uses the CPU: a CPU burst is generated from a simple floating point
operation repeated in a loop for a precise amount of time (given by transmission
parameters).

4.4 Analysis of Energy Traces

To make better decoder design decisions, several channel traces were observed,
collected and then used to calculate channel estimations and implement different
simulations of the channel performance and behavior. A standard on-off signaling
decoder needs to know the exact period of bits in the received signal in order
to be able to decode them. However, a channel built based on a phone’s power
consumption is expected to have hard-to-model noises that, after examining the
collected channel data traces, are actually affecting not only the peak periods but
also the peak amplitudes. The amount of external power consumed by a phone
can be largely affected by dominant OS-enforced, manufacturer-specific factors.
For instance, different sudden drop patterns in power consumption especially
when the phone is almost or completely charged, lack of control over the OS
scheduler; when, how often and for how long do some heavy power-consuming
OS background services run, as well as the precision and sampling rate of the
power monitor on the receiver side of the channel.

Figure4 shows a portion of the channel data captured after a transmission
of ten successive bits (ten Zeros, therefore ten peaks) was initiated by our app
on a Nexus 6 phone. It should be noted that the data was passed through a
low-pass filter to get rid of harsh, high frequency noises in order to make the
signal looks smoother. As a result, based on a threshold of 100 mA, ten peaks are



No Free Charge Theorem: A Covert Channel via USB Charging Cable 93

successfully detected. Moreover, the width of each peak, and hence the period of
each bit, is varying sufficiently. The first bit, for example, has a period of 300 ms
while the eighth one has a period of only 195ms. Although the intended bit
period generated and transmitted by the app was 500 ms, the average period of
the received bits was actually 311 ms, which the receiver has no way to predict
in advance. Such variations in the received signal are expected to affect the
performance of any decoder. An ideal matched filter receiver will have hard time
decoding such inconsistent signal and synchronization will be lost very quickly.
We elaborate further on this issue in the remaining sections.

300

300 mS

250

200

150

Current (mA)

100

50

2000 2500 3000 3500
Time (mS)

Fig. 4. A portion of a received signal showing the variations in peak widths and
amplitudes.

Decoder Design. In this section, we provide additional explanation about
the different processing stages that our decoder is taking the received signal
through in order to overcome the channel inconsistencies and decode the sent
bits with the minimum Bit Error Ratio (BER). In signal processing, the quality
of a communication channel can be measured in terms of BER (represented as
a percentage), which is the number of bit errors divided by the total number of
transmitted bits over the channel. Channels affected by interference, distortion,
noise, or synchronization errors have a high BER.

Figure 5 summarizes the different processing stages which will be discussed
in the order they take place in, along with some background information and
algorithm justifications, where applicable.

Encoded

A Pri
Data Threshold Peak Robust rlvat(_e
Bursts i} :>[ Filtering ]:>[ Estimation ]:>[ Detection ]:>[ Decoding ]:> Information

Fig. 5. Different phases of our decoder.

Data Filtering. First, the received signal is passed through a low-pass filter to
get rid of the harsh high-frequency noises. For instance, Fig. 6 shows the same
portion of a received signal before and after applying the low-pass filter. The
low-pass filter helps not only to make the signal looks smoother, but also to



94 R. Spolaor et al.

make the threshold-based detection of real peaks easier by eliminating narrow-
peak noises that can be falsely identified as real peaks or bits. Additionally, the
low-pass filter used in our decoder adjusts its pass and stop frequencies based
on the intended bit period generated by the phone in order to make sure that
we do not over-filter or over-attenuate the signal.

500

2?50-

€
B350
S
5
3ot

250

200 £
500 1000, 1500 2000 2500 500 1000_.. 1500
Time (mS) Time ?mS)

2000 2500

(a) Raw received signal. (b) Low-pass filtered received signal.

Fig. 6. A portion of a received signal before and after applying the low-pass filter.

Threshold Estimation. The decoder detects peaks by decoding unipolar RZ on-
off encoded bits. The presence or absence of a peak (a 0 or a 1 in our case,
respectively) at a certain time and for a specific period is then translated to
the corresponding bit. Peak detection is usually done by setting an appropriate
threshold; anything above the threshold is a peak and anything below is just
noise. However, deciding which threshold to use is not a trivial process especially
with the unpredictable noise in our channel and the variations in width and
amplitude of the received peaks.

The threshold value used by the decoder is highly critical to peaks detection,
the resulted width of detected peaks and the decoder performance. Hence, we
primarily use a known preamble data sent prior to the actual packet to estimate
the threshold. The preamble consists of eight known bits (eight zeros in our case)
at the start of the transmission, which means that the decoder is expecting eight
peaks at the start. Since a unipolar RZ on-off encoded zero has a pulse for half
of the bit period, the preamble is expected to have roughly the same number of
peak and no-peak samples. Therefore, a histogram of the preamble samples is
expected to split into two portions; peak and no-peak portions. Figure 7a shows a
histogram of the preamble samples shown in Fig. 7b. As observed, the histogram
has two distinguishable densities; each of them look like the probability density
function of a Gaussian distribution.

Estimating the parameters (mean and variance) of two Gaussians that are
believed to exist in one overall distribution is a complicated statistical problem.
However, the Gaussian Mixture Model (GMM), introduced and explained in [25],
is a probabilistic model commonly used to address this type of problem and



No Free Charge Theorem: A Covert Channel via USB Charging Cable 95

to statistically estimate the parameters of existing Gaussian populations. To
estimate the threshold, as shown in Fig. 8, the decoder uses the GMM to fit two
Gaussians to the two histogram portions, find the mean of each one of them and
then compute the threshold as the middle point between the two means. As a
result, our decoder is able to estimate the threshold independently and without
any previous knowledge of the expected amplitudes of the received bits. After
that, each sample is converted to either a peak sample or no-peak sample based
on whether the sample value is above or below the estimated threshold.

0.1

450

T

w
o
=]

ol
°
o
w
=3
=3

Probability
Current (mA)
N
3

o

o

&
»n
=3
o

-
o
=]

-
=)
=]

“ m L \ w

0 50
0 100 200 300 400 500 1000 2000 3000 4000 5000 6000 7000 8000
Sample Value (mA) Time (mS)
(a) A histogram of the preamble samples. (b) A received preamble signal.

Fig. 7. A histogram of the preamble samples shows a mixture of two Gaussian-like
densities.

Robust Decoding. Generally, the way a decoder translates the peak and no-peak
samples to zeros and ones is highly time-sensitive. For instance, if the bit period
is fixed and equals to T}, the decoder simply checks the presence or absence of
the peak in each T} period. Since this decoding decision is made based on a very
strict timing manner, the slightest error in the received bit periods will cause a
quick loss of synchronization. As mentioned in the previous section, the received
peak widths (and hence bit periods) over our channel are changing with a high
variation around their mean. Therefore, our decoding decision cannot rely on
an accurate notion of time. Instead, our decoder needs to assume a sufficient
amount of error in the period of each received bit and to search for the peaks in
a wider range instead of a strict period of time.

To address this level of time-insensitivity and achieve robustness to synchro-
nization errors, our decoding decision was made based on the time difference
between each two successive peaks. As an example, assume that two successive
zeros were sent and hence two peaks were received. The difference between the
start time of each peak should be rounded to the average bit period. It should be
noted that the decoder computes the average bit period based on the received
preamble data. However, if a zero-one-zero transmission was made, the time dif-
ference of the start of the two received peaks should be rounded to double of



96 R. Spolaor et al.

0.12

0.1

Probability
= o
° °
o 3

=)
°
2

T L nﬂ mnw:nwm\ ™~ L |

[ 100 200 300 400 500
Sample Value (mA)

Fig. 8. Using the Gaussian Mixture Model to estimate the threshold.

the average bit period. If a zero-one-one-zero transmission was made, the dif-
ference should be rounded to triple the average period and so on. Eventually,
synchronization is regained with every detected peak and based only on the time
difference between peaks, the decoder makes a decision on how many no-peak
bits (ones in our case) are transmitted between the zeros. The time difference
does not have to be exactly equal to a multiple of the average bit period. Instead,
a range of values can be rounded up to the same value and thus more flexible
time-insensitive decoding decision is made.

5 Experimental Evaluation

In this section, we first describe the devices used in our experiments and the val-
ues for transmission parameters. We then report the results of the transmission
evaluation.

5.1 Experiment Settings

In our experiments, we programmed the PowerSnitch app using Android Studio
with API. The device used to measure the energy provided to the device via
USB cable is Monsoon Power Monitor? in USB mode with 4.55V in output.
The decoder used to process signal was implemented in MATLAB. In order to
evaluate the performance of the transmission, we send out a payload comprised
of letters and numbers of ASCII code for a total of 512 bits. The values of period
used range from 500 ms to 1000 ms with increments of 100 ms. It is worth men-
tioning that bits sent over our channel were not packeted and no error detection
or correction techniques were used. For each phone and bit period, BER was
computed after sending 512 bits at once and then number of bits that were
incorrectly decoded was calculated.

2 www.msoon.com/LabEquipment /PowerMonitor.


www.msoon.com/LabEquipment/PowerMonitor

No Free Charge Theorem: A Covert Channel via USB Charging Cable 97

We evaluate the performance of our proposal on the following devices running
Android OS: Nexus 4 with Android 5.1.1 (API 22), Nexus 5 with Android 6.0
(APT 23), Nexus 6 with Android 6.0 (API 23) and Samsung S5 with Android
5.1.1 (API 22). We underline that the devices used in our experiments are actual
personal devices, kindly lent by some users without any money reward. In order
to replicate an actual real world scenario, we did not uninstall any app, nor
stopped any app running in background. The only intervention we made on
those devices is the installation of our PowerSnitch app.

5.2 Results

In Table 1, we report the performance of the decoder for processing the received
power bursts on different mobile devices. The results presented in the table are
in terms of BER in the transmission of the payload; the lower the BER, the
better is the quality of the transmission. For Nexus devices (i.e., Nexus 4, 5 and
6), we achieve a zero or low BER of periods of 800 ms and 900 ms (i.e., 1.25 and
1.11 bits per seconds, respectively). While for Nexus 4 and 6, the BER remains
under 20% and, for Nexus 5, it increases to 37% and 40% with periods 700 ms
and 600ms, respectively. For Samsung S5, the transmission BER is at 12.5%
with a period of 1s, and it slowly increases to around 21% with a period of half
a second.

The higher BER for Nexus 5 (i.e., periods 700 ms and 600 ms in Table 1) are
due to de-synchronization of the signal that the decoder was not able to recover.
To cope with this problem, we can divide the payload into packets, where a
packet header will be the preamble in order to recover the synchronization. A
quick overview of the communication literature can show how a BER of 30% can
be recovered using a simple Forward Error Correction (FEC) technique where
the transmitter encodes the data using an Error Correction Code (ECC) prior
to transmission; for example bits redundancy or parity checks.

Table 1. Results in terms of Bit Error Ratio (BER) as percentage.

Device Period (milliseconds)

Model Operating system version | 1000 | 900 |800 |700 |600 |500
Samsung S5 | Android 5.1.1 (API 22) |12.5 |13.5 | 13.31|16.33|17.9 |21.42
Nexus 4 Android 5.1.1 (API22) |13.5 | 0.78 0.0 | 0.0 |13.33|16.21
Nexus 5 Android 6.0 (API 23) 21.0 | 0.0 | 0.95/36.82/40.35|13.4
Nexus 6 Android 6.0 (API 23) 1.07, 0.0 | 0.21| 0.0 | 4.05| 7.42

6 Discussion and Optimizations

In this section, we elaborate further on the results obtained in the experimental
evaluation of our proposed attack (Sect. 5). In particular, we discuss on interesting



98 R. Spolaor et al.

observation made during our experiments. We also present the optimizations that
were implemented in the framework in order to make our proposed attack more
robust.

An interesting phenomenon to notice is that, as observed in our experiments,
the level of battery affects the quality of the transmission signal. In Fig.9, we
present the amount of electric current provided by the power supplier to a Nexus
6 during recharge (i.e., the first 35 min) and full battery states (i.e., after 35 min).
Indeed, when the level for the battery is low (i.e., 0% to around 40%) the device
consumes a high amount of energy, and almost all of it is used to recharge the
battery.

When attempting to transmit data in the aforementioned conditions, we
discover that the bursts were not easily distinguishable. In fact, the difference in
terms of energy consumption between burst and rest was so small that it cannot
be distinguished from noise; thus, they can be filtered out during the signal
processing. Additionally, when the level of the battery is increased, the amount
of energy consumed to recharge the battery gradually decreases. We observed
that when the battery level is higher than 50%, the power bursts become more
and more distinguishable. However the best condition under which the bursts are
clear is when the battery is fully charged. Indeed, as we can notice from Fig.9,
the current drops down after the battery level reaches 100%, because there is
no need to provide energy to the battery anymore - except to keep the device
running.

The percentages mentioned above also depends from the power supplier used
to provide energy to the device. In our experiments, we used Monsoon power
monitor which provides as output at most 4.55 V. Due to the limitation of such
power monitor, during the recharge of devices with fast charge technology (e.g.,
Samsung S5, Nexus 6 and 6P), which are able to work with 5.3V and 2mA, the
energy consumed is almost constant until the battery is almost fully charged.
Thus, we cannot decode any signal from the energy consumption.

In order to avoid to transmit when the receiver is not able to decode the
signal, PowerSnitch checks whether the battery level is among a certain threshold
w. Such threshold w can be obtained by PowerSnitch itself, simply knowing the
model in which it is running. This information can be easily obtained without
any permission (android.os.Build.MODEL and MANUFACTURER).

Optimizations. In what follows, we elaborate on the optimizations that were
implemented in order to not be detected or make the victim suspicious. The
first optimization is to keep a duty cycle (i.e., the time of burst in a period)
under 50%. During an attack, if such optimization is not taken into account
(i.e., a duty cycle greater than 75%), the victim may be alerted by two possible
effects:

— the temperature of the device could increase significantly, in a way that could
be perceived by touching it.

— if the attack takes place during the battery charge phase, the battery will
take more time to recharge due to the high amount of energy used by CPU.



No Free Charge Theorem: A Covert Channel via USB Charging Cable 99

250

Battery fully charged

USB Avg Current (mA)

Battery recharging

50

30 40 50 60 70
Time (min)

Fig. 9. Electric current provided to a Nexus 6 during recharge phase and battery fully
charged.

However, as previously explained in Sect. 3.2, the duty cycle should be 50% of
period (i.e., T/2) in order to achieve a RZ. Thus, the above effects are already
taken care of in our proposed attack.

Another optimization involves the Android Debug Bridge (ADB) tool. It is
possible to monitor CPU consumption of an Android device via ADB. Hence,
one may use such debug tool to detect that something strange is happening on
the device (i.e., a transmission on the covert channel using CPU bursts). Fortu-
nately, PowerSnitch app could easily detect whether ADB setting is active through
Settings.Global.ADB_ENABLED, once again provided by an Android API.

Another optimization to PowerSnitch app would be the ability to detect if
the power supplier is an accomplice of the attack. The accomplice has to let
PowerSnitch app know that it is listening to the covert channel by communicat-
ing something equivalent to a “hello message”. In order to do so, we can rely on
the information about the amount of electric current provided to recharge the
battery. Such information is made available through BatteryManager object,
provided by Android API. In particular, BATTERY_PROPERTY_CURRENT_NOW data
field (available from API 21 and on devices with power gauge, such as Nexus
series) of BatteryManager records an integer that represents the current entering
the battery in terms of mA.

On one hand, the power supplier can then variate the current in output above
and below a certain threshold 6 with a precise timing. As a practical and non-
limiting example, at a point in time during the recharging, the power supplier can
output current with the following behavior: (i) below 6 for ¢ seconds, (ii) above
for ¢ seconds, (iii) again below @ for ¢ seconds and finally (iv) above 8 for good. On
the other hand, since PowerSnitch app monitors BATTERY_PROPERTY_CURRENT _NOW
and knows the aforementioned behavior (along with both 6 and t), it will be able
to understand that at the other end of the USB cable there is an accomplice
power supplier ready to receive a transmission. This optimization is significant
for reducing the chance to remain undetected, since PowerSnitch app will trans-
mit data if and only if it is sure that an accomplice power supplier is listening. With
such optimization, we will obtain a half-duplex communication channel, since the



100 R. Spolaor et al.

communication is bidirectional but only one participant (i.e., the device or the
power source) is allowed to transmit at a time. This optimization is not currently
implemented and will be considered as future work.

To summarize, the conditions under which the transmission of data is optimal
and the chance of being detected is lowest are as follows: the mobile device has to
be charged more than 50%, the screen has to be off, ADB tool should be switched
off (which is true by default) and the phone must to be plugged with a USB charg-
ing cable to a public charging station which is controlled by the adversary.

7 Conclusion

In this paper, we demonstrate for the first time the practicality of using a (power-
only) USB charging cable as a covert channel to exfiltrate data from a smart-
phone, which is connected to a charging station. Since there are no visible signs
of the existence of a covert channel while the battery is recharging, the user
is oblivious that data is being leaked from the device. Moreover, our proposed
covert channel defeats existing USB charging protection dongles, as described
in [7] because it requires only the USB power pins to exfiltrate data in the form
of CPU power bursts.

To show the feasibility and practicality of our proposed covert channel, we
implemented an app, PowerSnitch, which does not require the user to grant
access to permissions at install-time (nor at run-time) on a non-rooted Android
phone. Once the device is plugged in a compromised public charging station,
the app encodes sensitive information and transmits it via power bursts back to
the station. Our empirical results show that we are able to exfiltrate a payload
encoded in power bursts at 1.25 bits per seconds with a BER under 1% on the
Nexus 4-6 devices and a BER of around 13% for Samsung S5. As future work, we
plan to investigate malicious power banks and how they can be exploited using
our covert, channel to exfiltrate data from smart devices. We will also work on the
transmitter and decoder by extending the framework to include error correction
algorithms and synchronization recover mechanisms to lower down the BER of
data transmission—as this was not the main goal of this paper.

Acknowledgments. This work is supported by ONR grants N00014-14-1-0029 and
N00014-16-1-2710, ARO grant W911NF-16-1-0485 and NSF grant CNS-1446866.

Veelasha Moonsamy is supported by the Technology Foundation STW (project
13499 - TYPHOON & ASPASIA) from the Dutch government.

Mauro Conti is supported by a Marie Curie Fellowship funded by the European
Commission (agreement PCIG11-GA-2012-321980). This work is also partially sup-
ported by the EU TagltSmart! Project (agreement H2020-ICT30-2015-688061), the
EU-India REACH Project (agreement ICI+4/2014/342-896), “Physical-Layer Security
for Wireless Communication”, and “Content Centric Networking: Security and Pri-
vacy Issues” funded by the University of Padua. This work is partially supported by
the grant n. 2017-166478 (3696) from Cisco University Research Program Fund and
Silicon Valley Community Foundation.

We would like to thank Elia Dal Santo and Moreno Ambrosin for their insightful
comments.



No Free Charge Theorem: A Covert Channel via USB Charging Cable 101

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Aloraini, B., Johnson, D.; Stackpole, B., Mishra, S.: A new covert channel over
cellular voice channel in smartphones. Technical report (2015). arXiv preprint
arXiv:1504.05647

Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on
smartphone touch screens. In: Proceedings of USENIX WOOT (2010)

Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proceedings of USENIX ACSAC (2012)

Baghel, S., Keshav, K., Manepalli, V.: An investigation into traffic analysis for
diverse data applications on smartphones. In: Proceedings of NCC (2012)

Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing
permission-based software by reducing the attack surface: an application to
android. In: Proceedings of ACM ASE (2012)

Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
Proceedings of USENIX ATC (2010)

Chacos, B.: USB condom promises to protect your dongle from infected ports. PC
World, August 2014. http://tinyurl.com/hvlgkrt

Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a systematic study of the
covert channel attacks in smartphones. In: Tian, J., Jing, J., Srivatsa, M. (eds.)
SecureComm 2014. LNICSSITE, vol. 152, pp. 427-435. Springer, Cham (2015).
doi:10.1007/978-3-319-23829-6_29

Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Analyzing android encrypted
network traffic to identify user actions. IEEE TIFS 11(1), 114-125 (2016)

Do, Q., Martini, B., Choo, K.K.R.: Exfiltrating data from android devices. Com-
put. Secur. 48, 74-91 (2015)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of ACM CCS (2011)

Ferreira, D., Dey, A.K., Kostakos, V.: Understanding human-smartphone concerns:
a study of battery life. In: Proceedings of PerCom (2011)

Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy anomalies and mobile
malware variants. In: Proceedings of ACM MobiSys (2008)

Lalande, J.-F., Wendzel, S.: Hiding privacy leaks in android applications using
low-attention raising covert channels. In: Proceedings of ARES (2013)

Lau, B., Jang, Y., Song, C., Wang, T., Chung, P.H., Royal, P.: Mactans: injecting
malware into IOS devices via malicious chargers. Black Hat, USA (2013)

Lin, L., Kasper, M., Glineysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382-395. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9_27

Liu, L., Yan, G., Zhang, X., Chen, S.: VirusMeter: preventing your cellphone from
spies. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp.
244-264. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04342-0_13
Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis of the communi-
cation between colluding applications on modern smartphones. In: Proceedings of
USENIX ACSAC (2012)

Meng, W., Lee, W.H., Murali, S., Krishnan, S.: Charging me and i know your
secrets!: towards juice filming attacks on smartphones. In: Proceedings of ACM
CPS-SEC (2015)


http://arxiv.org/abs/1504.05647
http://tinyurl.com/hvlqkrt
http://dx.doi.org/10.1007/978-3-319-23829-6_29
http://dx.doi.org/10.1007/978-3-642-04138-9_27
http://dx.doi.org/10.1007/978-3-642-04342-0_13

102

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

R. Spolaor et al.

Moonsamy, V., Rong, J., Liu, S.: Mining permission patterns for contrasting clean
and malicious android applications. J. Future Gener. Comput. Syst. 36, 122-132
(2013)

Novak, E., Tang, Y., Hao, Z., Li, Q., Zhang, Y.: Physical media covert channels
on smart mobile devices. In: Proceedings of ACM UbiComp (2015)

Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: password inference
using accelerometers on smartphones. In: Proceedings of ACM HotMobile (2012)
Pathak, A., Charlie Hu, Y., Zhang, M.: Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with Eprof. In: Proceedings of
ACM EuroSys (2012)

Proakis, J.G.: Intersymbol Interference in Digital Communication Systems. Wiley,
Hoboken (2003)

Reynolds, D.: Gaussian mixture models. Encycl. Biom., 827-832 (2015)

Schlegel, R., Zhang, K., Zhou, X.Y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound trojan for smartphones. In: Proceed-
ings of NDSS (2011)

Spreitzer, R.: Pin skimming: exploiting the ambient-light sensor in mobile devices.
In: Proceedings of ACM CCS SPSM (2014)

Stober, T., Frank, M., Schmitt, J., Martinovic, I.. Who do you sync you are?:
Smartphone fingerprinting via application behaviour. In: Proceedings of ACM
WiSec (2013)

Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Appscanner: automatic fin-
gerprinting of smartphone apps from encrypted network traffic. In: Proceedings of
IEEE EuroS&P (2016)

Android Developers. Optimizing for Doze and App Standby. http://tinyurl.com/
zvphw46

Business Insider. The Smartphone Market Is Now Bigger Than The PC Market
(2011). http://goo.gl/XkM8XM

Yan, L., Guo, Y., Chen, X., Mei, H.: A study on power side channels on mobile
devices. In: Proceedings of ACM Internetware (2015)

Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H.: AppScope: application Energy
metering framework for android smartphone using kernel activity monitoring. In:
Proceedings of ATC (2012)


http://tinyurl.com/zvphw46
http://tinyurl.com/zvphw46
http://goo.gl/XkM8XM

	No Free Charge Theorem: A Covert Channel via USB Charging Cable on Mobile Devices
	1 Introduction
	2 Related Work
	3 Background Knowledge
	3.1 Android System and Permissions
	3.2 Signal Transmission and Processing

	4 Covert Channel Using Mobile Device Energy Consumption
	4.1 Overview of Attack
	4.2 Terminology and Transmission Parameters
	4.3 PowerSnitch App: Implementing the Attack on Android
	4.4 Analysis of Energy Traces

	5 Experimental Evaluation
	5.1 Experiment Settings
	5.2 Results

	6 Discussion and Optimizations
	7 Conclusion
	References


